Filters

01° Let X be any set. By a filter on X, we mean a nonempty family \mathcal{F} of subsets of X which meets the following conditions:

1. $\emptyset \notin \mathcal{F}$
2. $F \in \mathcal{F}, G \in \mathcal{F} \implies F \cap G \in \mathcal{F}$
3. $F \in \mathcal{F}, F \subseteq H \implies H \in \mathcal{F}$

where F, G, and H are any subsets of X.

02° It may happen that a nonempty family \mathcal{F}_o of subsets of X meets conditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the family \mathcal{F} consisting of all subsets G of X such that there is some F in \mathcal{F}_o for which $F \subseteq G$. Obviously, \mathcal{F} is a filter on X, as it meets not only conditions (1) and (2) but also (3). We say that \mathcal{F}_o generates \mathcal{F}.

03° For instance, we may select a member ξ of X, then take \mathcal{F}_o to be the family consisting of the singleton $\{\xi\}$. In such a case, we refer to the filter generated by \mathcal{F}_o as the principal filter on X defined by ξ. We denote it by \mathcal{P}_ξ.

04° Let \mathcal{F} be a filter on X. Let A and B be subsets of X such that $A \cup B \in \mathcal{F}$. We contend that if $B \notin \mathcal{F}$ then there is a filter \mathcal{G} on X such that:

$$\mathcal{F} \cup \{A\} \subseteq \mathcal{G}$$

To prove the contention, we argue as follows. Let us form the family \mathcal{G}_o of subsets of X of the form $F \cap A$, where F runs through \mathcal{F}. Obviously, \mathcal{G}_o meets condition (2). Moreover, if there were some F in \mathcal{F} for which $F \cap A = \emptyset$ then $F \cap (A \cup B) = F \cap B$, so that B would be in \mathcal{F}, a contradiction. Consequently, \mathcal{G}_o meets condition (1). Now we need only take \mathcal{G} to be the filter generated by \mathcal{G}_o.

Maximal Filters

05° Let \mathcal{F} be the family of all filters on X. Let us supply \mathcal{F} with a partial ordering, as follows:

$$\mathcal{F}' \preceq \mathcal{F}' \iff \mathcal{F}' \subseteq \mathcal{F}''$$
where F' and F'' are any filters on X. With respect to the partial ordering on F just defined, we plan to study the *maximal* filters. These are the filters U on X such that, for any filter F on X, if $U \subseteq F$ then $U = F$. Very often, one refers to such filters as *ultrafilters*.

06° Obviously, the principal filters on X are maximal with respect to the foregoing partial ordering. We inquire whether there are any others.

07° Let U be an ultrafilter on X. With reference to article 04°, we find that, for any subsets A and B of X, if $A \cup B \in U$ then $A \in U$ or $B \in U$. We infer that U meets the *finite union condition*, which is to say that, for any finite family \mathcal{A} of subsets of X, if:

$$\bigcup A \in U$$

then there is at least one set A in \mathcal{A} such that $A \in U$.

08° In fact, the foregoing condition characterizes ultrafilters. To see that it is so, let us introduce a filter \mathcal{F} on X which meets the finite union condition and let us suppose that \mathcal{F} is not maximal. Accordingly, we may introduce a filter \mathcal{G} on X and a subset A of X such that $\mathcal{F} \subseteq \mathcal{G}$, $A \notin \mathcal{F}$, and $A \in \mathcal{G}$. Now the subset A and its complement B in X yield $A \cup B \in \mathcal{F}$ while $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$. Consequently, the supposition is untenable. Hence, \mathcal{F} is maximal.

09° By the foregoing discussion, we infer that, for any ultrafilter U on X, U is principal iff:

$$\bigcap U \neq \emptyset$$

In fact, for any member ξ of X, if:

$$\xi \in \bigcap U$$

then, for any V in U, $\{\xi\} \cup (V \setminus \{\xi\}) \in U$, hence, $\{\xi\} \in U$, so that $U = \mathcal{P}_\xi$.

Existence of Maximal Filters

10° From this point forward, let us assume that X is infinite.

11° Let \mathcal{E} be the filter on X consisting of all subsets E for which the complement \overline{E} of E in X is finite. In turn, let \mathcal{F}_0 be the family of all filters \mathcal{F} on X such that $\mathcal{E} \subseteq \mathcal{F}$.

12° Verify that \mathcal{E} is not maximal.
13° By a chain in \(F_o \), we mean a subfamily \(C \) of \(F_o \) such that, for any filters \(F' \) and \(F'' \) in \(C \), \(F' \preceq F'' \) or \(F'' \preceq F' \). We may say that \(C \) is linearly ordered. For such a family \(C \), we find that:

\[
\mathcal{G} = \bigcup C
\]

is a filter in \(F_o \) and \(\mathcal{G} \) is an upper bound for \(C \), in the sense that, for each filter \(F \) in \(C \), \(F \subseteq \mathcal{G} \).

14° By the foregoing observation, we conclude that every chain in \(F_o \) is bounded. Now the Lemma of Zorn implies that there exist filters \(\mathcal{U} \) in \(F_o \) which are maximal. Obviously, such filters are maximal in \(F \) as well. And they are not principal.

The Space of Ultrafilters

15° Let \(X \) be any set. Let \(U \) be the family of all ultrafilters on \(X \). For amusement, let us note that:

\[
U \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))
\]

We intend to supply \(U \) with a topology. The corresponding topological space proves to have remarkable properties.

16° To that end, let \(A \) be any subset of \(X \). Let \(T_A \) be the subset of \(U \) defined as follows:

\[
T_A = \{ U \in U : A \in U \}
\]

These subsets of \(U \) form the base for the topology on \(U \), soon to be defined.

17° Note that \(T_\emptyset = \emptyset \) and \(T_X = U \). Verify that:

\[
B \subseteq C \implies T_B \subseteq T_C
\]

\[
T_{B \cap C} = T_B \cap T_C, \quad T_{B \cup C} = T_B \cup T_C, \quad T_{X \setminus D} = U \setminus T_D
\]

where \(B, C, \) and \(D \) are any subsets of \(X \).

18° In turn, let \(A \) be any subset of \(\mathcal{P}(X) \). Let \(T_A \) be the subset of \(U \) defined as follows:

\[
T_A = \bigcup_{A \in A} T_A
\]

These subsets of \(U \) form the topology on \(U \). They are the open subsets of \(U \). By definition, they are the various unions of families of basic open subsets of \(U \).
Properties

19° Now let us prove that the topological space U is hausdorff, compact, and extremely disconnected.

20° First, hausdorff. Let U_1 and U_2 be distinct ultrafilters in U: $U_1 \neq U_2$

Of course, there must be some subset A of X such that $A \in U_1$ but $A \notin U_2$. Hence, $B = X \setminus A \in U_2$. Consequently:

$U_1 \in T_A, \; U_2 \in T_B, \; T_A \cap T_B = \emptyset$

It follows that X is hausdorff.

21° Second, compact. Let us introduce an open covering of U:

$C_A = \{T_A : A \in A\}$

where A is a subset of $\mathcal{P}(\mathcal{P}(X))$. By the definition of covering:

$\bigcup_{A \in A} T_A = U$

We must show that there is a finite subset F of A such that:

$\bigcup_{A \in F} T_A = U$

To that end, let B be the subset of $\mathcal{P}(X)$ defined as follows:

$B = \bigcup A$

Obviously:

$\bigcup_{B \in B} T_B = \bigcup_{A \in A} (\bigcup_{B \in B} T_B) = \bigcup_{A \in A} T_A = U$

Moreover, for any B in B, there is some A in A such that $B \in A$, so that:

$T_B \subseteq T_A$

Now we need only show that there is a finite subset F of B such that:

$(\circ) \quad \bigcup_{B \in F} T_B = U$
In effect, we have reduced the context of a general covering of \(U \) by open subsets to the context of a basic covering of \(U \) by basic open subsets.

22° By the finite union condition, condition (\(\circ \)) is equivalent to the following condition:

\[\bigcup_{B \in \mathcal{F}} B = X \]

Let us suppose that there is no finite subset \(\mathcal{F} \) of \(\mathcal{B} \) such that condition (\(\bullet \)) holds true. It would follow that the family \(\mathcal{C} \) of complements:

\[\mathcal{C} = \{ C = X \setminus B : B \in \mathcal{B} \} \]

generates a filter on \(X \). Consequently, there would be an ultrafilter \(\mathcal{U} \) on \(X \) which includes \(\mathcal{C} \). It would follow that:

\[\mathcal{U} \not\subseteq \bigcup_{B \in \mathcal{B}} \mathcal{T}_B \]

a contradiction. So the supposition is untenable. Hence, there is finite subset \(\mathcal{F} \) of \(\mathcal{B} \) such that condition (\(\bullet \)) holds true. The proof is complete.

23* Verify that, for any subset \(D \) of \(X \), \(\mathcal{T}_D \) is not only open but also compact.

24° Third, extremely disconnected. Let \(\mathcal{A} \) be any subset of \(\mathcal{P}(X) \). We will show that there is a subset \(\mathcal{B} \) of \(X \) that:

\[\text{clo}(\mathcal{T}_\mathcal{A}) = \mathcal{T}_\mathcal{B} \]

In this way, we will prove that the closure of any open subset of \(U \) is itself open, in fact, that it is a basic open subset of \(U \).

25° To that end, let us introduce the following sets:

\[B = \bigcup \mathcal{A}, \quad C = X \setminus B, \quad \mathcal{B} = \mathcal{P}(B), \quad \mathcal{C} = \mathcal{P}(C) \]

One can easily check that \(\mathcal{T}_\mathcal{C} \) is the largest (under the relation of inclusion) among all open subsets of \(U \) which are disjoint from \(\mathcal{T}_\mathcal{A} \). Consequently:

\[U \setminus \mathcal{T}_\mathcal{C} = \text{clo}(\mathcal{T}_\mathcal{A}) \]
However, $T_B = T_B$ and $T_C = T_C$. It follows that:

$$T_B = U \setminus T_C = \text{clo}(T_A)$$

The proof is complete.

26. For each member ξ of X, we may identify ξ with the corresponding principal ultrafilter P_ξ. In this way, we obtain an injective mapping π carrying X to U:

$$\pi(\xi) = P_\xi$$

where ξ is any member of X. Show that the range of π is dense in U:

$$\text{clo}(\text{ran}(\pi)) = U$$

Show that, for each member ξ of X, $\pi(\xi)$ is an isolated point in U. In fact:

$$\{P(\xi)\} = T_{\{\xi\}}$$