1 Surfaces

Let U be a region in \mathbb{R}^2 and let H be an injective mapping carrying U to \mathbb{R}^3. Let $S := H(U)$ be the range of H, a subset of \mathbb{R}^3. We will refer to S as a surface in \mathbb{R}^3, parametrized by H. We will represent members of \mathbb{R}^2 as follows:

$$u = (u^1, u^2)$$

and members of \mathbb{R}^3 as follows:

$$x = (x^1, x^2, x^3)$$

Now the mapping H can be expressed in the following form:

$$H(u) = (x^1(u^1, u^2), x^2(u^1, u^2), x^3(u^1, u^2))$$

We will represent the total derivative of H at u as follows:

$$DH(u) = \begin{pmatrix} H^1_1(u) & H^1_2(u) \\ H^2_1(u) & H^2_2(u) \\ H^3_1(u) & H^3_2(u) \end{pmatrix}$$

which is to say that:

$$H^a_j(u^1, u^2) := \frac{\partial x^a}{\partial u^j}(u^1, u^2) \quad (1 \leq j \leq 2, \ 1 \leq a \leq 3)$$

We require that, for each u in U, the column vectors:

$$H_1(u) := \begin{pmatrix} H^1_1(u) \\ H^2_1(u) \\ H^3_1(u) \end{pmatrix} \quad \text{and} \quad H_2(u) := \begin{pmatrix} H^1_2(u) \\ H^2_2(u) \\ H^3_2(u) \end{pmatrix}$$

be linearly independent, which is to say that:

$$H_1(u) \times H_2(u) \neq 0$$
2° Let $N(u)$ be the unit vector normal to the surface S at the point $H(u)$:

\[
N(u) := \frac{1}{\|H_1(u) \times H_2(u)\|} (H_1(u) \times H_2(u))
\]
We define the first fundamental form G for the surface S as follows:

$$G(u) = \begin{pmatrix} G_{11}(u) & G_{12}(u) \\ G_{21}(u) & G_{22}(u) \end{pmatrix}$$

where:

$$G_{k\ell}(u) := H_k(u) \cdot H_\ell(u) \quad (1 \leq k \leq 2, \ 1 \leq \ell \leq 2)$$

One should note that $G(u)$ is a symmetric positive definite matrix.

We plan to describe the various metric properties of the surface S, such as the length of a curve in S, the area of a subset of S, and the curvature of S at a point. We will show that these properties can all be expressed in terms of the first fundamental form. This fact releases us from the view that, in general, a surface must lie in \mathbb{R}^3. We may focus our attention upon the region U in \mathbb{R}^2 and the first fundamental form G:

$$G(u) = \begin{pmatrix} G_{11}(u) & G_{12}(u) \\ G_{21}(u) & G_{22}(u) \end{pmatrix}$$

with which it has in some fashion been supplied. We may then proceed to calculate the various metric properties of U in terms of G.

Now let J be an open interval in \mathbb{R} and let Γ be a mapping carrying J to \mathbb{R}^3 such that the range $C := \Gamma(J)$ of Γ is a subset of the surface S. We require that, for each t in J, $D\Gamma(t) \neq 0$. We shall refer to C as a curve in S, parametrized by Γ. Of course, we may introduce the mapping γ carrying J to U:

$$t \longrightarrow \gamma(t) = u = (u^1(t), u^2(t))$$

such that:

$$(\Gamma^1(t), \Gamma^2(t), \Gamma^3(t)) = \Gamma(t)$$

$$= H(\gamma(t))$$

$$= (H^1(u^1(t), u^2(t)), H^2(u^1(t), u^2(t)), H^3(u^1(t), u^2(t)))$$

The mapping γ describes the given curve C in terms of the parameters u^1 and u^2. By the Chain Rule, we have:

$$D\Gamma(t) = DH(\gamma(t))D\gamma(t)$$

Hence:

$$\frac{d\Gamma}{dt}(t) = \frac{du^j}{dt}(t)H_j(\gamma(t))$$
For the latter relation, we have invoked the *summation convention*, which directs that indices which appear in a given expression both “up” and “down” shall be summation indices running through their given range (in this case, from 1 to 2). In turn:

\[\| \frac{d\Gamma}{dt}(t) \|^2 = \frac{du_k}{dt}(t)G_{k\ell}(u^1(t), u^2(t))\frac{du_\ell}{dt}(t) \]

Now we may proceed to calculate the *length* of the segment of the curve \(C \) in \(S \) from \(\Gamma(t') \) to \(\Gamma(t'') \):

\[(6) \quad \int_{t'}^{t''} \| D\Gamma(t) \| dt = \int_{t'}^{t''} \sqrt{\frac{du_k}{dt}(t)G_{k\ell}(u^1(t), u^2(t))\frac{du_\ell}{dt}(t)} dt \]

where \(t' \) and \(t'' \) are any numbers in \(J \) for which \(t' \leq t'' \). We are led to interpret:

\[(7) \quad \| V \| := \sqrt{V^kG_{k\ell}(u)V^\ell} \]

as the *length* of the tangent vector:

\[V := \begin{pmatrix} V^1 \\ V^2 \end{pmatrix} \]

to \(U \) at \(u \), and to interpret:

\[\int_{t'}^{t''} \sqrt{\frac{du_k}{dt}(t)G_{k\ell}(u^1(t), u^2(t))\frac{du_\ell}{dt}(t)} dt \]

as the *length* of the segment of the curve \(\gamma \) in \(U \) from \(\gamma(t') \) to \(\gamma(t'') \). More generally, we interpret:

\[(8) \quad V \circ W := V^kG_{k\ell}(u)W^\ell \]

as the *inner product* of the vectors:

\[V = \begin{pmatrix} V^1 \\ V^2 \end{pmatrix} \quad \text{and} \quad W = \begin{pmatrix} W^1 \\ W^2 \end{pmatrix} \]

in \(\mathbb{R}^2 \), tangent to \(U \) at \(u \).

5° We may also proceed to calculate the *area* of a subset \(T \) of \(S \), as follows. We first present \(T \) as \(T = H(V) \), where \(V \) is a subset of \(U \). We then equate the *area* of \(T \) with the following double integral:

\[(9) \quad \text{area}(T) := \int_{V} \int_{V} \| H_1(u^1, u^2) \times H_2(u^1, u^2) \| du^1 du^2 \]
Since:
\[
\|H_1(u) \times H_2(u)\|^2 = G_{11}(u)G_{22}(u) - G_{21}(u)G_{12}(u) =: g(u)
\]
we interpret:
\[
\text{area}(V) := \int\int_V \sqrt{g(u^1, u^2)} \, du^1 du^2
\]
(10)
as the area of the subset \(V \) of \(U \).

1 Curvature

Let us consider a particular point \(\bar{P} \):
\[
\bar{P} = (\bar{x}^1, \bar{x}^2, \bar{x}^3) = H(\bar{u}^1, \bar{u}^2)
\]
in the surface \(S \). We plan to describe the curvature of \(S \) at \(\bar{P} \). To that end, let us consider a curve \(C \) in \(S \) containing \(\bar{P} \). The curvature of \(C \) at \(\bar{P} \) derives in part from the bending of \(C \) within \(S \) and in part from the bending of \(S \) itself. One may refer to the former as the internal bending of \(C \) and to the latter as the external bending. One may say that the internal bending is a matter of free choice but that the external bending is forced upon the curve by the structure of the surface. Among all curves \(C \) in \(S \) containing \(\bar{P} \), we may consider those for which the external bending is minimum and those for which it is maximum. By definition, the gaussian curvature of the surface \(S \) at the point \(\bar{P} \) is the product of these two extreme values.

Let \(J \) be an open interval in \(\mathbb{R} \) and let \(\Gamma \) be a mapping carrying \(J \) to \(\mathbb{R}^3 \) such that \(C := \Gamma(J) \). As usual, we require that, for each \(t \) in \(J \), \(D\Gamma(t) \neq 0 \). For convenience, let \(0 \) be in \(J \) and let \(\Gamma(0) = \bar{P} \). In turn, let \(\gamma \) be the mapping carrying \(J \) to \(U \):
\[
t \longrightarrow \gamma(t) = u = (u^1(t), u^2(t))
\]
such that:
\[
(\Gamma^1(t), \Gamma^2(t), \Gamma^3(t)) = \Gamma(t)
= H(\gamma(t))
= (H^1(u^1(t), u^2(t)), H^2(u^1(t), u^2(t)), H^3(u^1(t), u^2(t)))
\]
Of course, \(\gamma(0) = \bar{u} = (\bar{u}^1, \bar{u}^2) \). We have:
\[
\frac{d\Gamma}{dt}(t) = \frac{du^j}{dt}(t).H_j(\gamma(t))
\]
and:
\[
\frac{d^2 \Gamma}{dt^2}(t) = \frac{d^2 u^j}{dt^2}(t).H_j(\gamma(t)) + \frac{du^k}{dt}(t)\frac{du^\ell}{dt}(t).H_{k\ell}(\gamma(t))
\]
where:
\[
H_{k\ell}(u) := \frac{\partial^2 H}{\partial u^k \partial u^\ell}(u)
\]

Now we may introduce functions $K^j_{k\ell}$ and $L_{k\ell}$ such that:
\[
H_{k\ell}(u) = K^j_{k\ell}(u).H_j(u) + L_{k\ell}(u).N(u)
\]
The foregoing relations are called Gauss’ Equations. One should note carefully that:
\[
L_{k\ell}(u) = H_{k\ell}(u) \cdot N(u)
\]

One refers to L:
\[
L(u) = \begin{pmatrix}
L_{11}(u) & L_{12}(u) \\
L_{21}(u) & L_{22}(u)
\end{pmatrix}
\]
as the second fundamental form for the surface S. One refers to K^1 and K^2:
\[
K^1(u) = \begin{pmatrix}
K^1_{11}(u) & K^1_{12}(u) \\
K^1_{21}(u) & K^1_{22}(u)
\end{pmatrix} \quad \text{and} \quad K^2(u) = \begin{pmatrix}
K^2_{11}(u) & K^2_{12}(u) \\
K^2_{21}(u) & K^2_{22}(u)
\end{pmatrix}
\]
as the connection forms for S. Finally, we obtain:
\[
\frac{d^2 \Gamma}{dt^2}(t) = A^j(t).H_j(\gamma(t)) + B(t).N(\gamma(t))
\]
where:
\[
A^j(t) := \frac{d^2 u^j}{dt^2}(t) + \frac{du^k}{dt}K^j_{k\ell}(\gamma(t))(t)\frac{du^\ell}{dt}(t)
\]
and:
\[
B(t) := \frac{du^k}{dt}(t)L_{k\ell}(\gamma(t))\frac{du^\ell}{dt}(t)
\]
Clearly:
\[
A^j(t).H_j(\gamma(t))
\]
is tangent to S at $H(u)$. It represents the internal bending of C at $H(u)$. Moreover:
\[
B(t).N(\gamma(t))
\]
is normal to S at $H(u)$. It represents the external bending of C at $H(u)$.

6
At this point, we are interested in the value of $B(0)$:

$$B(0) = \frac{du^k}{dt}(0)L_{k\ell}(\bar{u})\frac{du^\ell}{dt}(0)$$

since it measures the “external bending” of C at \bar{P}. To set the scale of computation, we require that C be parametrized by arc length. The effect of this requirement is to force:

$$\frac{du^k}{dt}(t)G_{k\ell}(\gamma(t))\frac{du^\ell}{dt}(t) = 1$$

In particular:

$$\frac{du^k}{dt}(0)G_{k\ell}(\bar{u})\frac{du^\ell}{dt}(0) = 1$$

Now we wish to study the minimum and maximum values of the quantity:

$$V^kL_{k\ell}(\bar{u})V^\ell$$

where V is any vector in \mathbb{R}^2 meeting the condition:

$$V^kG_{k\ell}(\bar{u})V^\ell = 1$$

The product of these extreme values is the gaussian curvature for S at \bar{P}.

Here is our problem. We have two symmetric matrices:

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$$

and:

$$G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$$

The latter is positive definite. These matrices define functions (“quadratic forms”) as follows:

$$\lambda(V) := V^kL_{k\ell}V^\ell = (V^1 \ V^2)\begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}\begin{pmatrix} V^1 \\ V^2 \end{pmatrix}$$

and:

$$\gamma(V) := V^kG_{k\ell}V^\ell = (V^1 \ V^2)\begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}\begin{pmatrix} V^1 \\ V^2 \end{pmatrix}$$

We wish to calculate the product of the minimum and the maximum values of the quantity $\lambda(V)$, subject to the condition $\gamma(V) = 1$. By “diagonalizing”
the quadratic form L relative to the (positive definite) quadratic form G, one can show that the foregoing product equals:

$$
\frac{L_{11} L_{22} - L_{21} L_{12}}{G_{11} G_{22} - G_{21} G_{12}}
$$

Accordingly, we define the curvature of the surface S at the point \bar{P} to be:

$$
\kappa_S(\bar{P}) := \frac{L_{11}(\bar{u}) L_{22}(\bar{u}) - L_{21}(\bar{u}) L_{12}(\bar{u})}{G_{11}(\bar{u}) G_{22}(\bar{u}) - G_{21}(\bar{u}) G_{12}(\bar{u})}
$$

(19)

3 Geodesics

10° In the foregoing section, we focussed our attention upon the “external bending” of a given curve C in the surface S, expressed by the following vector:

$$
B(t).N(\gamma(t))
$$

and we proceeded to develop a measure of “curvature” for S at a given point \bar{P}. Now we will focus our attention upon the “internal bending” of C, expressed by the following vector:

$$
A^j(t).H_j(\gamma(t))
$$

By a geodesic in S we mean a curve C in S for which the internal bending is 0. Such a curve is “as straight as possible,” given that S is curved. Clearly, C is a geodesic if it satisfies the following Geodesic Equations:

$$
\frac{d^2 u^j}{dt^2} + \frac{du^k}{dt}(t) K^j_{k\ell}(\gamma(t)) \frac{du^\ell}{dt}(t) = 0 \quad (1 \leq j \leq 2)
$$

(20)

To make use of these equations, we must calculate the functions:

$$
K^j_{k\ell}
$$

It will turn out that they can be expressed in terms of the first fundamental form G. Hence, the geodesics in S are determined by G. We begin by defining:

$$
K_{k\ell m}(u) := H_{k\ell}(u) \bullet H_m(u)
$$

(21)

Since:

$$
G_{km}(u) = H_k(u) \bullet H_m(u)
$$
we have:
\[
\frac{\partial G_{km}}{\partial u^\ell}(u) = \frac{\partial (H_k \bullet H_m)}{\partial u^\ell}(u) \\
= H_{k\ell}(u) \bullet H_m(u) + H_k(u) \bullet H_{m\ell}(u) \\
= K_{k\ell m}(u) + K_{m\ell k}(u)
\]

By permuting the indices, we obtain:
\[
\frac{\partial G_{km}}{\partial u^\ell}(u) = K_{k\ell m}(u) + K_{m\ell k}(u)
\]
\[
\frac{\partial G_{\ell k}}{\partial u^m}(u) = K_{\ell mk}(u) + K_{km\ell}(u)
\]
\[
\frac{\partial G_{m\ell}}{\partial u^k}(u) = K_{m\ell k}(u) + K_{\ell km}(u)
\]

Since:
\[
K_{k\ell m}(u) = K_{\ell km}(u)
\]
we obtain:

(22) \[K_{k\ell m}(u) = \frac{1}{2} \left(\frac{\partial G_{km}}{\partial u^\ell}(u) + \frac{\partial G_{\ell m}}{\partial u^k}(u) - \frac{\partial G_{k\ell}}{\partial u^m}(u) \right) \]

Now we observe that:
\[
K_{k\ell m}(u) := H_{k\ell}(u) \bullet H_m(u) \\
= K_{k\ell}^i(u) (H_i(u) \bullet H_m(u)) \\
= K_{k\ell}^i(u) G_{im}(u)
\]

Let us introduce the companion \(\hat{G} \) to \(G \), defined by inversion as follows:

(24) \[
\hat{G}(u) = \begin{pmatrix} G_{11}(u) & G_{12}(u) \\ G_{21}(u) & G_{22}(u) \end{pmatrix} = \frac{1}{g(u)} \begin{pmatrix} G_{22}(u) & -G_{12}(u) \\ -G_{21}(u) & G_{11}(u) \end{pmatrix}
\]

Clearly:

(25) \[
G_{im}(u) G^{mj}(u) = \Delta^i_j(u) := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

Hence:
\[
K_{k\ell}^j(u) = K_{k\ell}^i \Delta^i_j(u) = K_{k\ell}^i(u) G_{im}(u) G^{mj}(u) = K_{k\ell m}(u) G^{mj}(u)
\]

so that:

(26) \[
K_{k\ell}^j(u) = \frac{1}{2} G^{jm}(u) \left(\frac{\partial G_{km}}{\partial u^\ell}(u) + \frac{\partial G_{\ell m}}{\partial u^k}(u) - \frac{\partial G_{k\ell}}{\partial u^m}(u) \right)
\]

These relations express the connection forms \(K^1 \) and \(K^2 \) in terms of the first fundamental form \(G \).
4 The Great Theorem of Gauss

11° Now we contend that the curvature of \(S \) at any point \(\bar{P} \) can be computed in terms of the connection forms \(K^1 \) and \(K^2 \), and the first fundamental form \(G \), hence (by the foregoing relations (26)), in terms of the first fundamental form \(G \) alone. To simplify the following computations, we will surpress reference to the variable position \(\bar{u} \) in \(U \). We begin by defining:

\[
H_{k\ell m} := \frac{\partial^3 H}{\partial u^k \partial u^\ell \partial u^m} = \frac{\partial H_{k\ell}}{\partial u^m}
\]

and:

\[
N_m := \frac{\partial N}{\partial u^m}
\]

From Gauss’ Equations – that is, from relations (12):

\[
H_{k\ell} = K^j_{k\ell} H_j + L_{k\ell} N
\]

we obtain:

\[
H_{k\ell m} = \frac{\partial K^j_{k\ell}}{\partial u^m} H_j + \frac{\partial K^j_{k\ell}}{\partial u^m} H_j m + \frac{\partial L_{k\ell}}{\partial u^m} N + L_{k\ell} N_m
\]

We must find expressions for \(N_m \). Since:

\[
N \cdot N = 1
\]

we have:

\[
N_m \cdot N = 0
\]

As a result, we may introduce coefficients \(C^\ell_m \) such that:

\[
N_m = C^\ell_m H_\ell
\]

Since:

\[
H_\ell \cdot N = 0
\]

we have:

\[
H_{k_m} \cdot N + H_k \cdot N_m = 0
\]

From relations (13):

\[
L_{km} = H_{km} \cdot N = -H_k \cdot N_m = -C^\ell_m (H_k \cdot H_\ell) = -G_{k\ell} C^\ell_m
\]

Hence:

\[
C^\ell_m = \Delta^j_k C^\ell_m = G^{jk} G_{k\ell} C^\ell_m = -G^{jk} L_{km}
\]
Finally, we obtain:

\begin{equation}
N_m = -L^j_m H_j
\end{equation}

where:

\begin{equation}
L^j_m := G^{jk} L_{km}
\end{equation}

One refers to relations (30) as Weingarten’s Equations.

12° By straightforward computation, we find that:

\[L_{11} L_{22} - L_{21} L_{12} = (G_{11} G_{22} - G_{21} G_{12}) (L^1_1 L^2_2 - L^1_2 L^2_1) \]

Hence, we may express the gaussian curvature of \(S \) as follows:

\begin{equation}
\kappa_S = \det(L^j_m)
\end{equation}

13° Now let us return to relations (29). We have:

\begin{equation}
H_{k\ell m} = \frac{\partial K^j_{k\ell}}{\partial u^m} H_j + K^i_{k\ell} H_{im} + \frac{\partial L^j_{k\ell}}{\partial u^m} N - L^j_{k\ell} L^j_m H_j
\end{equation}

Recalling Gauss’ Equations once again, we can present the tangential and the normal components of \(H_{k\ell m} \) as follows:

\begin{equation}
H_{k\ell m} = P^j_{k\ell m} H_j + Q_{k\ell m} N
\end{equation}

where:

\begin{equation}
P^j_{k\ell m} := \frac{\partial K^j_{k\ell}}{\partial u^m} + K^i_{k\ell} K^j_{im} - L^j_{k\ell} L^j_m
\end{equation}

and:

\begin{equation}
Q_{k\ell m} := K^i_{k\ell} L_{im} + \frac{\partial L^j_{k\ell}}{\partial u^m}
\end{equation}

Since \(H_{k\ell m} = H_{k\ell m} \), we must have:

\[P^j_{k\ell m} = P^j_{km\ell} \]

Hence:

\begin{equation}
R^j_{k\ell m} = L^j_\ell L_{km} - L^j_m L_{k\ell}
\end{equation}
where:

\begin{equation}
R^j_{k\ell m} := \left(\frac{\partial K^i_{km}}{\partial u^\ell} + K^i_{km} K^j_{i\ell} \right) - \left(\frac{\partial K^i_{k\ell}}{\partial u^m} + K^i_{k\ell} K^j_{im} \right)
\end{equation}

One refers to the functions just defined as the curvature functions for the surface \(S \). Visibly, they are defined in terms of the connection forms \(K^1 \) and \(K^2 \) for \(S \); hence, in terms of the first fundamental form \(G \) for \(S \). Finally, let us define certain companions to the curvature functions:

\begin{equation}
R^i_{k\ell m} := G_{ij} R^j_{k\ell m}
\end{equation}

By relations (36), we have:

\begin{equation}
R^i_{k\ell m} = G_{ij} (L_j^i L_{km} - L_j^i L_{k\ell}) = L_{i\ell} L_{km} - L_{im} L_{k\ell}
\end{equation}

In particular:

\begin{equation}
R^i_{1212} = L_{11} L_{22} - L_{12} L_{21}
\end{equation}

With reference to relation (19), we conclude that:

\begin{equation}
\kappa_S = \frac{R_{1212}}{g}
\end{equation}

One refers to this conclusion as “The Great Theorem” of Gauss, to the effect that one may compute the curvature of a surface \(S \) from the first fundamental form \(G \) for \(S \).

14° One can easily check that:

\begin{equation}
R_{ijk\ell} = -R_{ij\ell k}
R_{ij\ell k} = -R_{ijk\ell}
\end{equation}

Hence, the various (companion) curvature functions \(R_{ijk\ell} \) equal \(-R_{1212}, 0, \) or \(R_{1212} \). Instead of 16 different functions, we have (essentially) just one. For spaces \(S \) having dimension greater than 2, the situation is more complex.

5 Coordinate Transformations

15° The basic functions for this study are the following:

\begin{equation}
G_{k\ell}(u), \quad K^j_{k\ell}(u), \quad \text{and} \quad R^j_{k\ell m}(u)
\end{equation}

They comprise the first fundamental form, the connection forms, and the curvature form. The basic relations:

\begin{equation}
K^j_{k\ell}(u) = \frac{1}{2} G^j_{km}(u) \left(\frac{\partial G_{km}}{\partial u^\ell}(u) + \frac{\partial G_{tm}}{\partial u^k}(u) - \frac{\partial G_{k\ell}}{\partial u^m}(u) \right)
\end{equation}
\(R_{k\ell m}^l(u) = \left(\frac{\partial K^i_{k\ell}}{\partial u^m}(u) + K^i_{k\ell}(u)K^j_{lm}(u) \right) - \left(\frac{\partial K^i_{km}}{\partial u^\ell}(u) + K^i_{km}(u)K^j_{\ell m}(u) \right) \)

relate the connection forms and the curvature form to the first fundamental form. Let us consider what happens when we replace the old coordinates:

\[u = (u^1, u^2) \]

by new coordinates:

\[v = (v^1, v^2) \]

where:

\[v^1 = v^1(u^1, u^2) \]
\[v^2 = v^2(u^1, u^2) \]

and:

\[u^1 = u^1(v^1, v^2) \]
\[u^2 = u^2(v^1, v^2) \]

We wish to calculate:

\[\bar{G}_{qr}(v), \quad \bar{K}_{qr}^p(v), \quad \text{and} \quad \bar{R}_{qrs}^p(v) \]

in terms of:

\[G_{k\ell}(u), \quad K^j_{k\ell}(u), \quad \text{and} \quad R_{k\ell m}^l(u) \]

We begin by noting that:

\[\bar{H}(v) = H(u) \]

where \(\bar{H} \) is the mapping (carrying an open subset \(V \) of \(\mathbb{R}^2 \) to \(\mathbb{R}^3 \)) which parametrizes the surface \(S \) in terms of the new coordinates. We have:

\[\bar{H}_q(v) = \frac{\partial u^k}{\partial v^q}(v)H_k(u) \]

Hence:

\[(46) \quad \bar{G}_{qr}(v) = \frac{\partial u^k}{\partial v^q}(v)\frac{\partial u^\ell}{\partial v^r}(v)G_{k\ell}(u) \]

Since:

\[\frac{\partial u^\ell}{\partial v^r}(v)\frac{\partial v^r}{\partial u^m}(u) = \Delta^\ell_m \]
\[G_{km}(u)G^{mn}(u) = \Delta^n_k \]
\[\frac{\partial v^s}{\partial u^k}(u)\frac{\partial u^k}{\partial v^q}(v) = \Delta^s_q \]
we have:
\[\left(\frac{\partial u^k}{\partial v^q}(v)\frac{\partial u^\ell}{\partial v^r}(v)G_{kl}(u)\right)\left(\frac{\partial v^s}{\partial u^m}(u)\frac{\partial v^r}{\partial u^n}(u)G^{mn}(u)\right) = \Delta_q^s\]

Hence:
\[(47) \quad \bar{G}^{rs}(v) = \frac{\partial v^r}{\partial u^m}(u)\frac{\partial v^s}{\partial u^n}(u)G^{mn}(u)\]

By similar (but more intricate) computations, based upon relations (44), (45), (46), and (47), one can show that:
\[(48) \quad \bar{K}^p_{qr}(v) = \frac{\partial v^p}{\partial u^j}(u)\frac{\partial u^k}{\partial v^q}(v)\frac{\partial u^\ell}{\partial v^r}(v)K^j_{kl}(u) + \frac{\partial v^p}{\partial u^m}(u)\frac{\partial^2 u^m}{\partial v^q\partial v^r}(v)\]

Moreover:
\[(49) \quad \bar{R}^p_{qrst}(v) = \frac{\partial v^p}{\partial u^j}(u)\frac{\partial u^k}{\partial v^q}(v)\frac{\partial u^\ell}{\partial v^r}(v)\frac{\partial u^m}{\partial v^s}(v)R^j_{klm}(u)\]

and:
\[(50) \quad \bar{R}^p_{qrst}(v) = \frac{\partial u^j}{\partial v^p}(v)\frac{\partial u^k}{\partial v^q}(v)\frac{\partial u^\ell}{\partial v^r}(v)\frac{\partial u^m}{\partial v^s}(v)R^j_{klm}(u)\]

16° As an exercise, one should show that:
\[(51) \quad \bar{R}_{1212}^1 = \kappa_S = \frac{R_{1212}}{g}\]

By relation (51), one infers that the curvature of the surface S is the same, whether computed relative to the coordinates (u^1, u^2) or the coordinates (v^1, v^2).