Extending the reach of ab initio theory: Valence space IMSRG

Ragnar Stroberg
TRIUMF
ARIS In the Mountains
Keystone, Colorado
May 30, 2017
1. In-medium SRG for a valence space
2. Ensemble normal ordering
3. Selected results
4. Outlook

Similarity renormalization group (SRG)

- $H|\Psi\rangle = E|\Psi\rangle$ is too difficult to solve.
- Perform unitary transformation $\tilde{H} = UHU$ (implicit change of basis) so SE is easier to solve.
- Iterative/guess-and-check approach.
- $U = e^{\Omega} = e^{\Omega_n}e^{\Omega_{n-1}}\ldots e^{\Omega_2}e^{\Omega_1}$
- Alternatively, $\Omega_n \rightarrow \eta ds \Rightarrow$ flow equation
- Computational effort dominated by commutator evaluation.

\(H |\Psi\rangle = E |\Psi\rangle \) is too difficult to solve.

Perform unitary transformation \(\tilde{H} = U H U^\dagger \) (implicit change of basis) so SE is easier to solve.

Iterative/guess-and-check approach.

\[
U \equiv e^{\Omega} = e^{\Omega_n} e^{\Omega_{n-1}} \ldots e^{\Omega_2} e^{\Omega_1}
\]

Alternatively, \(\Omega_n \to \eta ds \Rightarrow \text{flow equation} \)

Computational effort dominated by commutator evaluation.

Similarity renormalization group (SRG)

- $H|\Psi\rangle = E|\Psi\rangle$ is too difficult to solve.
- Perform unitary transformation $\tilde{H} = UHU^\dagger$ (implicit change of basis) so SE is easier to solve.
- Iterative/guess-and-check approach.

\[U \equiv e^\Omega = e^{\Omega_n}e^{\Omega_{n-1}} \ldots e^{\Omega_2}e^{\Omega_1} \]

- Alternatively, $\Omega_n \rightarrow \eta ds \Rightarrow$ flow equation

\[\frac{dH(s)}{ds} = [\eta(s), H(s)]. \]

- Computational effort dominated by commutator evaluation.

• $H|\Psi\rangle = E|\Psi\rangle$ is too difficult to solve.

• Perform unitary transformation $\tilde{H} = UHU^\dagger$ (implicit change of basis) so SE is easier to solve.

• Iterative/guess-and-check approach.

\[
U = e^{\Omega} = e^{\Omega_n}e^{\Omega_{n-1}} \ldots e^{\Omega_2}e^{\Omega_1}
\]

• Alternatively, $\Omega_n \rightarrow \eta ds \Rightarrow$ flow equation

\[
\frac{dH(s)}{ds} = [\eta(s), H(s)].
\]

• Computational effort dominated by commutator evaluation.

Many-body forces

\[
\frac{dH(s)}{ds} = [\eta(s), H(s)]
\]

(Two-body) (Two-body) \sim \begin{align*}
&\begin{bmatrix}
1 & 2 \\
1 & 2
\end{bmatrix} \\
&\begin{bmatrix}
1 & 2 \\
1 & 2
\end{bmatrix}
\end{align*}

(Three-body)

(Two-body) (Three-body) \sim \begin{align*}
&\begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{bmatrix} \\
&\begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{bmatrix}
\end{align*}

(Four-body)
What we would like:
Why “in-medium”?

\[H = E_0 + \sum_{ij} H_{ij} \{ a_i^\dagger a_j \} + \frac{1}{4} \sum_{ijkl} H_{ijkl} \{ a_i^\dagger a_j^\dagger a_l a_k \} + \frac{1}{36} \sum_{ijklmn} H_{ijklmn} \{ a_i^\dagger a_j^\dagger a_k^\dagger a_n a_m a_l \} + \ldots \]

- In general, the transformation \(U \) will induce 4-body, 5-body, etc. forces.
- Write \(H \) in terms of excitations out of reference \(|\Phi_0\rangle \).
- Normal ordering: \(\langle \Phi_0 | \{ a_1^\dagger \ldots a_N^\dagger a_N \ldots a_1 \} | \Phi_0 \rangle = 0 \)
- If \(|\Phi_0\rangle \approx |\Psi\rangle \), higher-body terms are negligible.
- Truncate all operators at 2-body level (NO2B).

Tskukiyma et al (2011)
Why “in-medium”?

\[H = E_0 + \sum_{ij} H_{ij} \{a_i^\dagger a_j\} + \frac{1}{4} \sum_{ijkl} H_{ijkl} \{a_i^\dagger a_j^\dagger a_l a_k\} + \frac{1}{36} \sum_{ijklmn} H_{ijklmn} \{a_i^\dagger a_j^\dagger a_k^\dagger a_n a_m a_l\} + \ldots \]

- In general, the transformation \(U \) will induce 4-body, 5-body, etc. forces.

- Write \(H \) in terms of excitations out of reference \(|\Phi_0\rangle\).

- Normal ordering: \(\langle \Phi_0 | \{a_1^\dagger \ldots a_N^\dagger a_N \ldots a_1\} | \Phi_0 \rangle = 0 \)

- If \(|\Phi_0\rangle \approx |\Psi\rangle\), higher-body terms are negligible.

- Truncate all operators at 2 body level (NO2B)

Tskukiyama et al (2011)
In-medium SRG

Why “in-medium”?

\[H = E_0 + \sum_{ij} H_{ij} \{a_i^+ a_j\} + \frac{1}{4} \sum_{ijkl} H_{ijkl} \{a_i^+ a_j^+ a_l a_k\} + \frac{1}{36} \sum_{ijklmn} H_{ijklmn} \{a_i^+ a_j^+ a_k^+ a_n a_m a_l\} + \ldots \]

- In general, the transformation \(U \) will induce 4-body, 5-body, etc. forces.
- Write \(H \) in terms of excitations out of reference \(|\Phi_0\rangle \).
- Normal ordering: \(\langle \Phi_0 | \{a_1^+ \ldots a_N^+ a_N \ldots a_1\} | \Phi_0 \rangle = 0 \).
- If \(|\Phi_0\rangle \approx |\Psi\rangle \), higher-body terms are negligible.
- **Truncate all operators at 2 body level (NO2B)**

Tskukiyma et al (2011)

Ragnar Stroberg (TRIUMF) Extending the reach of ab initio theory May 30, 2017 6 / 1
Solving the many-body problem

- Decouple a 1×1 sub-block
- Use SRG to suppress excitations out of $|\Phi_0\rangle$
- After decoupling, energy is $E_0 = \langle \Phi_0 | \tilde{H} | \Phi_0 \rangle$
Open shell systems:

- Multiple (quasi-) degenerate configurations ⇒ strong mixing, $|\Phi_0\rangle \not\approx |\Psi\rangle$

- Single Slater determinant may not have good total angular momentum J

- Large rotation angle ⇒ induced many-body forces

Strategies:

- Break symmetries and restore afterward
- Construct multi-configuration reference, then decouple (multi-reference IM-SRG)
- Decouple a subset of configurations, then construct state from them using standard shell model machinery, e.g. NuShellX (valence-space IMSRG)

Tsukiyama et al. (2012), Hergert et al. (2013), Bogner et al. (2014)
Open shell systems: multiple (quasi-) degenerate configurations \Rightarrow strong mixing, $|\Phi_0\rangle \not\approx |\Psi\rangle$

Single Slater determinant may not have good total angular momentum J

Large rotation angle \Rightarrow induced many-body forces

Strategies:
- Break symmetries and restore afterward
- Construct multi-configuration reference, then decouple (multi-reference IM-SRG)
- Decouple a subset of configurations, then construct state from them using standard shell model machinery, e.g. NuShellX (valence-space IMSRG)

Tsukiyama et al. (2012), Hergert et al. (2013), Bogner et al. (2014)
What reference should be used when decoupling a valence space?

(i.e. what is the “medium”?)

Obvious choice: the inert core, e.g. ^{16}O.
Ensemble normal ordering

Experiment
SCGF
GGF
CCSD(T)
IT-NCSM
MR-IMSRG
IMSRG(SM)

Reference: inert core

$\langle \Phi_0 | \{a_i^\dagger \ldots a_N\} | \Phi_0 \rangle = 0$

$\text{Tr} \left(\rho \{a_i^\dagger \ldots a_N\} \right) = 0$

$|\Phi_0\rangle = |^{22}\text{O}\rangle$

$\rho = \sum_\alpha c_\alpha |\Phi_\alpha\rangle \langle \Phi_\alpha|$
Ensemble normal ordering

Reference: inert core

\[E_{gs} \text{ (MeV)} \]

\(A \)

\(A = 16 \) (\(Z = 8 \))

Experiment
SCGF
GGF
CCSD(T)
IT-NCSM
MR-IMSRG
IMSRG(SM)
Ensemble normal ordering

Reference: inert core
Reference: nearest closed shell
(Ensemble gives very similar results)
Ground state energies

E_{gs} (MeV)

(a) 4C (Z=6)

(b) 4N (Z=7)

(c) 4O (Z=8)

(d) 23Na (Z=11)

(e) 44Ca (Z=20)

(f) 58Ni (Z=28)

Experiment
CCSD(T)
IT-NCSM
MR-IM-SRG
IM-SRG(ENO)

Experiment
SCGF
GGF
IT-NCSM
MR-IM-SRG
IM-SRG(SM)
IM-SRG(ENO)

CRCC
MR-IM-SRG
IM-SRG(SM)
IM-SRG(ENO)

SRS et al. PRL (2017)

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017
Ground state energies

SRS et al. PRL (2017)

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017
Saturation and finite nuclei

<table>
<thead>
<tr>
<th></th>
<th>EM 500/400</th>
<th>EM 1.8/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>$N^3\text{LO}$</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\Lambda_{2N} = 500$ MeV</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>non-local regulator</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>fit to NN scattering, ^2H</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\lambda_{SRG} = 1.88$ fm$^{-1}$</td>
<td>\approx same</td>
</tr>
<tr>
<td>3N</td>
<td>$N^2\text{LO}$</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\Lambda_{3N} = 400$ MeV</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>local regulator</td>
<td>\approx same</td>
</tr>
<tr>
<td></td>
<td>fit to ^3H BE, $t_{1/2}$</td>
<td>non-local regulator</td>
</tr>
<tr>
<td></td>
<td>consistently SRG evolved</td>
<td>fit to ^3H BE, ^4He r_{ch}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no SRG for 3N</td>
</tr>
</tbody>
</table>

Saturation and finite nuclei

<table>
<thead>
<tr>
<th></th>
<th>EM 500/400</th>
<th>EM 1.8/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N^3LO</td>
<td>$\Lambda_{2N} = 500$ MeV</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>non-local regulator</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>fit to NN scattering, 2H</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\lambda_{SRG} = 1.88$ fm$^{-1}$</td>
<td>\approx same</td>
</tr>
<tr>
<td>3N</td>
<td>N^2LO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Lambda_{3N} = 400$ MeV</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>local regulator</td>
<td>\approx same</td>
</tr>
<tr>
<td></td>
<td>fit to 3H BE, $t_{1/2}$</td>
<td>non-local regulator</td>
</tr>
<tr>
<td></td>
<td>consistently SRG evolved</td>
<td>fit to 3H BE, 4He r_{ch}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no SRG for 3N</td>
</tr>
</tbody>
</table>

Neither interaction is fully consistent however... Saturation properties are important for finite nuclei.

Graphs:

1. **EM 500/400**
 - ACa (Z=20)

2. **EM 1.8/2.0 Ca**
Saturation and finite nuclei

<table>
<thead>
<tr>
<th></th>
<th>EM 500/400</th>
<th>EM 1.8/2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>N^3LO</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\Lambda_{2N} = 500 \text{ MeV}$</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>non-local regulator</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>fit to NN scattering, ^2H</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>$\lambda_{SRG} = 1.88 \text{ fm}^{-1}$</td>
<td>\approx same</td>
</tr>
<tr>
<td>^3N</td>
<td>N^2LO</td>
<td>same</td>
</tr>
<tr>
<td>3N</td>
<td>$\Lambda_{3N} = 400 \text{ MeV}$</td>
<td>\approx same</td>
</tr>
<tr>
<td></td>
<td>local regulator</td>
<td>non-local regulator</td>
</tr>
<tr>
<td></td>
<td>fit to $^3\text{H BE}$, $t_{1/2}$</td>
<td>fit to $^3\text{H BE}$, ^4He r_{ch}</td>
</tr>
<tr>
<td></td>
<td>consistently SRG evolved</td>
<td>no SRG for 3N</td>
</tr>
</tbody>
</table>

- Neither interaction is fully consistent however...
- Saturation properties are important for finite nuclei

Ragnar Stroberg (TRIUMF) Extending the reach of ab initio theory

May 30, 2017 15 / 1
EM 1.8/2.0 interaction

Ragnar Stroberg (TRIUMF)

Extending the reach of ab initio theory
Extending the reach of ab initio theory

![Graph showing neutron number and proton number relationship](image)

EM 1.8/2.0 interaction

Ragnar Stroberg (TRIUMF)

Extending the reach of ab initio theory

May 30, 2017
EM 1.8/2.0 interaction
Extending the reach of ab initio theory

Ragnar Stroberg (TRIUMF)
Em 1.8/2.0 Interaction

Extending the reach of ab initio theory
Extending the reach of ab initio theory

AME 2012

EM 1.8/2.0 interaction
EM 1.8/2.0 interaction

Ragnar Stroberg (TRIUMF)

Extending the reach of ab initio theory

May 30, 2017
Extending the reach of ab initio theory

Ragnar Stroberg (TRIUMF)

Proton number Z

Neutron number N

Mass Number A

Energy (MeV)

S2n (MeV)

K

N=40

AME 2012

IM-SRG

H

He

Li

Be

B

C

N

O

F

Ne

Na

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

Cm

Bk

Cf

Es

Fm

Md

No

Lr

Rf

Db

Sg

Bh

Hs

Mt

Ds

Rg

Cn

Nh

Fl

Mc

Lv

Ts

 Og

May 30, 2017
Extending the reach of ab initio theory

Ragnar Stroberg (TRIUMF)

Baumann et al. Nature (2007), Möller et al. (1995), Samyn et al. (2004), Holt et al. (in prep.)
A note of caution

- Only difference: choice of initial NN force.
- Identical procedure for fitting 3N contact terms.
- Based on few-body data, all interactions are equally good.
- Big differences for finite nuclei.
- 1.8/2.0 EM interaction is "magic", i.e. lucky.

Simonis et al. arxiv:1704.02915

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017
The reach of ab initio theory

Extending the reach of ab initio theory

Ragnar Stroberg (TRIUMF)
The reach of ab initio theory
The reach of ab initio theory

Ragnar Stroberg (TRIUMF)
The reach of ab initio theory

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017 19 / 1
Limited by truncation of 3N matrix elements

\[E_{3 \text{max}} = e_1 + e_2 + e_3 \]
Beyond binding energies

Bogner et al. PRL (2014), SRS et al. PRC(R) (2016),

Ragnar Stroberg (TRIUMF)
Beyond binding energies

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017 21 / 1
What does the future hold?
(Technical developments)

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3-body terms
 - Invariant trace
 - Full IMSRG(3): Include 3-body terms throughout the calculation

- Heavy-mass frontier
 - Improve handling of 3N forces

- Decoupling arbitrary valence spaces
 - Island(s) of inversion
 - Parity-changing transitions, e.g. $E1$

- Improved basis
 - Two-frequency oscillator basis for halo systems
 - Explicit inclusion of collective modes
What does the future hold?

(Technical developments)

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3-body terms
 - Invariant trace
 - Full IMSRG(3): Include 3-body terms throughout the calculation

- Heavy-mass frontier
 - Improve handling of 3N forces

- Decoupling arbitrary valence spaces
 - Island(s) of inversion
 - Parity-changing transitions, e.g. $E1$

- Improved basis
 - Two-frequency oscillator basis for halo systems
 - Explicit inclusion of collective modes
Outlook

What does the future hold?
(Technical developments)

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3-body terms
 - Invariant trace
 - Full IMSRG(3): Include 3-body terms throughout the calculation

- Heavy-mass frontier
 - Improve handling of 3N forces

- Decoupling arbitrary valence spaces
 - Island(s) of inversion
 - Parity-changing transitions, e.g. $E1$

- Improved basis
 - Two-frequency oscillator basis for halo systems
 - Explicit inclusion of collective modes

Ragnar Stroberg (TRIUMF)
Extending the reach of ab initio theory
May 30, 2017
What does the future hold? (Technical developments)

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3-body terms
 - Invariant trace
 - Full IMSRG(3): Include 3-body terms throughout the calculation

- Heavy-mass frontier
 - Improve handling of 3N forces

- Decoupling arbitrary valence spaces
 - Island(s) of inversion
 - Parity-changing transitions, e.g. $E1$

- Improved basis
 - Two-frequency oscillator basis for halo systems
 - Explicit inclusion of collective modes
What does the future hold?
(Observables)

- Radii / isotope shifts
- E^0 transitions
- Chiral currents for $M1$, Gamow-Teller operators
- Neutrinoless double beta decay
- Structure factors for dark matter detection
- Superallowed Fermi decays
- Suggestions?
Valence space IM-SRG with ensemble normal ordering allows access to all nuclei up to $A \sim 100$.

Reach in A is presently limited by $E_{3\text{max}}$ truncation.

Consistent operators for other observables can be obtained.

Chiral interactions still need work (magic notwithstanding).

Next goal: how to reliably estimate truncation error?

Collaborators:

TRIUMF A. Calci, J. Holt, P. Navrátil, C. Payne, O. Drozdowski, D. Fullerton, C. Gwak, L. Kemmler, S. Leutheusser, D. Livermore

NSCL/MSU S. Bogner, H. Hergert, N. Parzuchowski

TU Darmstadt K. Hebeler, R. Roth, A. Schwenk, J. Simonis, C. Stumpf

ORNL/UT G. Hagen, T. Morris