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K
not theory is usually understood to be
the study of embeddings of topologi-
cal spaces in other topological spaces.
Classical knot theory, in particular, is
concerned with the ways in which a cir-

cle or a disjoint union of circles can be embedded
in R3. Knots are usually described via knot dia-
grams, projections of the knot onto a plane with
breaks at crossing points to indicate which strand
passes over and which passes under, as in Fig-
ure 1. However, much as the concept of “numbers”
has evolved over time from its original meaning
of cardinalities of finite sets to include ratios,
equivalence classes of rational Cauchy sequences,
roots of polynomials, and more, the classical con-
cept of “knots” has recently undergone its own
evolutionary generalization. Instead of thinking
of knots topologically as ambient isotopy classes
of embedded circles or geometrically as simple
closed curves in R3, a new approach defines knots
combinatorially as equivalence classes of knot di-
agrams under an equivalence relation determined
by certain diagrammatic moves. No longer merely
symbols standing in for topological or geomet-
ric objects, the knot diagrams themselves have
become mathematical objects of interest.

Doing knot theory in terms of knot diagrams,
of course, is nothing new; the Reidemeister moves
date back to the 1920s [21], and identifying knot
invariants (functions used to distinguish differ-
ent knot types) by checking invariance under the
moves has been common ever since. A recent shift
toward taking the combinatorial approach more
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Figure 1. Knot diagrams.

seriously, however, has led to the discovery of

new types of generalized knots and links that do

not correspond to simple closed curves in R3.

Like the complex numbers arising from missing

roots of real polynomials, the new generalized

knot types appear as abstract solutions in knot

equations that have no solutions among the classi-

cal geometric knots. Although they seem esoteric

at first, these generalized knots turn out to have

interpretations such as knotted circles or graphs

in three-manifolds other thanR3, circuit diagrams,

and operators in exotic algebras. Moreover, clas-

sical knot theory emerges as a special case of the

new generalized knot theory.

This diagram-based combinatorial approach to

knot theory has revived interest in a related

approach to algebraic knot invariants, applying

techniques from universal algebra to turn the

combinatorial structures into algebraic ones. The

resulting algebraic objects, with names such as kei,

quandles, racks, and biquandles, yield new invari-

ants of both classical and generalized knots and

provide new insights into old invariants. Much like

groups arising from symmetries of geometric ob-

jects, these knot-inspired algebraic structures have

connections to vector spaces, groups, Lie groups,

Hopf algebras, and other mathematical structures.
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Consequentially, they have potential applications
in disciplines from statistical mechanics to bio-
chemistry to other areas of mathematics, with
many promising open questions.

Virtual Knots
A geometric knot is a simple closed curve in R3;
a geometric link is a union of knots that may be
linked together. A diagram D of a knot or link
K is a projection of K onto a plane such that no
point in D comes from more than two points in K.
Every point in the projection with two preimages
is then a crossing point ; if the knot were a physical
rope laid on the plane of the paper, the crossing
points would be the places where the rope touches
itself. We indicate which strand of the knot goes
over and which goes under at a crossing point by
drawing the undercrossing strand with gaps.

Combinatorially, then, a knot or link diagram
is a four-valent graph embedded in a plane with
vertices decorated to indicate crossing informa-
tion. We can describe such a diagram by giving
a list of crossings and specifying how the ends
are to be connected; for example, a Gauss code
is a cyclically ordered list of over- and under-
crossing points with connections determined by
the ordering. See Figure 2.
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Figure 2. A knot and its Gauss code.

Intuitively, moving a knot or link around in
space without cutting or retying it shouldn’t
change the kind of knot or link we have. Thus
we really want topological knots and links, where
two geometric knots are topologically equivalent if
one can be continuously deformed into the other.
Formally, topological knots are ambient isotopy
classes of geometric knots and links. In the 1920s
Kurt Reidemeister showed that ambient isotopy of
simple closed curves in R3 corresponds to equiv-
alence of knot diagrams under sequences of the
moves in Figure 3 [21]. In these moves, the portion
of the diagram outside the pictured neighborhood
remains fixed. The proof that a function defined
on knot diagrams is a topological knot invariant
is then reduced to a check that the function value
is unchanged by the three moves.

In the mid-1990s various knot theorists (e.g.,
[11, 14, 17]), studying combinatorial methods of
computing knot invariants using Gauss codes and
similar schemes for encoding knot diagrams, no-
ticed that even the Gauss codes whose associated

Figure 3. Reidemeister moves.

graphs could not be embedded in the plane still
behaved like knots in certain ways—for instance,
knot invariants defined via combinatorial pairings
of Gauss codes still gave valid invariants when
ordinary knots were paired with nonplanar Gauss
codes. A planar Gauss code always describes a
simple closed curve in three-space; what kind of
thing could a nonplanar Gauss code be describing?

Resolving the vertices in a planar four-valent
graph as crossings yields a simple closed curve

in three-dimensional space.1 To draw nonplanar
graphs, we normally turn edge-intersections into
crossings, but here all the crossings are already
supposed to be present as vertices in the graph.
Thus we need a new kind of crossing, a virtual
crossing which isn’t really there, to resolve the
nonvertex edge-intersections in a nonplanar Gauss
code graph. To keep the crossing types distinct, we
draw a virtual crossing as a circled self-intersection
with no over-or-under information. See Figure 4.

Figure 4. Virtual moves.

It turned out that Reidemeister equivalence
of these nonplanar “knot diagrams” was impor-
tant in defining and calculating the invariants.

1Actually, we only need R2 × (−ǫ, ǫ)—knots are almost

two-dimensional!
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Since Reidemeister equivalence classes of planar

knot diagrams coincide with classical knots, it

seemed natural to refer to the generalized equiv-

alence classes as “knots” despite their inclusion

of nonplanar diagrams. The computations were

suggesting that familiar topological knots are a

special case of a more general kind of thing,

namely Reidemeister equivalence classes of “knot

diagrams” which may or may not be planar. The re-

sulting “combinatorial revolution” was a shift from

thinking of the diagrams as symbols represent-

ing topological objects (ambient isotopy classes

of simple closed curves in R3) to thinking of the

objects themselves as equivalence classes of dia-

grams. To reject these virtual knots on the grounds

that they do not represent simple closed curves

in R3 would mean throwing away infinite classes

of knot invariants, akin to ignoring complex roots

of polynomials on the grounds that they are not

“real” numbers.

Virtual crossings and their rules of interaction

were introduced in 1996 by Louis Kauffman [17].

Since the virtual crossings are not really there,

any strand with only virtual crossings should

be replaceable with any other strand with the

same endpoints and only virtual crossings. This

is known as the detour move; it breaks down into

the four virtual moves in Figure 4.

Despite their abstract origin, virtual knots do

have a concrete geometric interpretation. Virtual

crossings can be avoided by drawing nonpla-

nar knot diagrams on compact surfaces Σ which

may have nonzero genus,2 providing “bridges”

or “wormholes” that can be used to avoid edge-

crossings. A virtual knot is then a simple closed

curve in an ambient space of the form Σ× (−ǫ, ǫ)
(called a thickened surface or trivial I-bundle). Vir-

tual crossings are not crossings in the classical

sense of two strands close together—the strands

meeting in a virtual crossing are on opposite sides

of the ambient space or “universe in which the knot

lives”—but are instead artifacts of forcing a knot

in a nonplanar ambient space into the plane. This

diagrams-on-surfaces approach was introduced

by Naoko and Seiichi Kamada, who dubbed the

results abstract knots in [14]. Other ideas related

to virtual knots conceived independently include

Vladimir Turaev’s virtual strings [24] and Roger

Fenn, Richárd Rimányi, and Colin Rourke’s welded

braids [8].

Figure 5 shows the smallest nonclassical virtual

knot interpreted as a list of labeled crossings

which cannot be realized in the plane, a virtual

knot diagram and a knot diagram drawn on a

surface with nonzero genus.

2Technically, we need to allow stabilization moves on the

surface containing the knot diagram.

Figure 5. A nonclassical virtual knot.

Generalized Knots
Once we have one new type of crossing, it is natural
to consider others, spawning a zoo of new species

of generalized knot types. Introducing a new kind
of crossing requires new Reidemeister-style rules
of interaction. These rules or moves are deter-
mined by the desired combinatorial, topological,
or geometric interpretation. For example, Figure 6
illustrates how the geometric understanding of
virtual knots as knot diagrams drawn on surfaces
with genus permits some moves while forbidding

others.

∼

6∼

Figure 6. Geometric motivation for moves.

We’ve seen that virtual crossings represent

genus in the surface on which the knot diagram is
drawn. Flat crossings are classical crossings where
we forget which strand goes over and which goes
under; these are convenient for studying the virtual
structure separately from the classical structure
and can be understood as “shadows” of classical
crossings. Singular crossings are places where the
knot is glued to itself with the strands meeting in

a fixed cyclic order, that is, rigid vertices. Knots in
I-bundles over nonorientable surfaces are known
as twisted virtual knots; we indicate when a strand
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has gone through a crosscap with a twist bar [2].

Figure 7 shows generalized crossing types with
their geometric interpretations, Figure 8 lists some
of their interaction laws, and Figure 9 shows some

forbidden moves that look plausible but are not
allowed based on the topological motivations for

the new crossing types.

Virtual

Flat

Singular

Twist bar

Figure 7. Generalized crossing types.

The combinatorial revolution also applies to
higher-dimensional knots. Knotted surfaces in R4

have “diagrams” consisting of immersed surfaces

inR3 with sheets broken to indicate crossing infor-
mation. Combinatorially, such a knotted surface
diagram consists of boxes containing triple points,

boxes containing cone points, boxes containing
pairs of crossed sheets, and boxes containing sin-
gle sheets, each with information about how the

boxes are to be connected. An abstract knotted
surface diagram allows joining boxes in arbitrary
ways, including ways that require virtual self-

intersections to fit into R
3. An abstract knotted

surface is then an equivalence class of such di-
agrams under the Roseman moves, the knotted

surface version of the Reidemeister moves [4].
Introducing new types of crossings is not the

only way to combinatorially generalize knots;

much as altering the rules of arithmetic can
change Z into Zn, changing the list of allowed

moves by replacing a move or adding or delet-
ing moves also results in new types of “knots”,

in which we now understand the term “knot” to
mean “equivalence class of diagrams”. As with
the generalized crossing types, such alternative
move-sets usually have a geometric or topologi-
cal motivation. One example is framed knots, in
which the geometric notion of fixing the linking
number of the knot with its blackboard framing
curve corresponds combinatorially to replacing
the type I move with a writhe-preserving doubled I
move, illustrated in Figure 10. Another example
is welded knots, in which a strand may move over
but not under a virtual crossing; welded virtual
crossings are pictured as “welded to the paper”.

Generalized knots have unusual properties not
found in the classical knot world. Flipping a virtual
knot over, that is, viewing it from the other side of
the paper, generally results in a different virtual

knot,3 unlike the classical case in which flipping
over is just a rotation in space. Similarly, we can tie
two virtual unknots sequentially in a string and get
a nontrivial knot as a result! Figure 11 shows the
Kishino knot, the result of joining two trivial virtual
knots to obtain a nontrivial virtual knot [19]. The
reader is invited to verify that the two knots on
the left are trivial and to try to unknot the virtual
knot on the right using only the legal moves from
Figures 3 and 4 and not the forbidden moves in
Figure 9. Proving that the Kishino knot is nontrivial
turned out to be quite difficult, requiring algebraic
invariants such as those in the next section.

Despite their apparent strangeness, generalized
knots are increasingly finding applications both
inside and outside of knot theory. Every invariant
of virtual knots is automatically an invariant of
ordinary classical knots. Virtual knot diagrams
arise in computations in physics involving nonpla-
nar Feynman diagrams [27]. Thinking of degree-n
vertices as a type of crossing extends the combi-
natorial revolution to spatial graph theory, that is,
embeddings of graphs in R3, with applications in
modeling of molecules in biochemistry, as well as
areasof theoretical physics, such as spin networks.

Algebraic Knottiness

Turning knots into algebraic structures is an old
idea, relatively speaking; the Artin braid groups
were introduced in the 1920s [1], and many
useful knot invariants (especially the “quantum
invariants”, which have connections to quantum
groups, i.e., noncommutative noncocommutative
Hopf algebras) have been derived from matrix rep-
resentations of tangle algebras [15]. Including
generalized crossings in our braids and tan-
gles naturally yields corresponding new algebraic
structures such as virtual braid groups and flat
virtual tangle algebras, from which generalized
quantum invariants can be derived. However,
algebraification of knots via group theory or linear

3Curiously reminiscent of complex conjugation. . . .
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Figure 8. Rules of interaction for generalized crossings.

Figure 9. Forbidden moves.

algebra imposes certain a priori constraints on

the resulting algebraic structures, for example,

associativity of multiplication, which seem some-

how artificial. More importantly, by insisting on

forcing the algebraic structure into a predefined

framework, we risk sacrificing useful information.

The combinatorial diagrammaticviewpoint sug-

gests a method for deriving the minimal algebraic

structure determined by Reidemeister equivalence

of knot diagrams: start by labeling sections of

a knot diagram with generators of an algebraic

structure and defining operations where the pieces

meet at crossings. The Reidemeister moves then

determine axioms for our new algebraic structure.

We can divide the resulting algebraic structures

into arc algebras where the labels are attached to

arcs, that is, portions of the knot diagram from

one undercrossing point to the next (which can

be traced without lifting your pencil), and semiarc

algebras where the generatorsare semiarcs, that is,

portions of the knot diagram obtained by dividing

at both over- and undercrossing points.

December 2011 Notices of the AMS 1557



For example, if we label arcs in a knot diagram

with generators and define an operation x ⊲ y to

mean “the result of x going under y”, then the

Reidemeister moves tell us the minimal axioms

the algebraic structure must satisfy in order to

respect the knot structure. The resulting algebraic

object, called a kei (圭) or involutory quandle, was

defined in the 1940s by Mituhisa Takasaki [23].

See Figure 12.

Definition. A kei is a set X with a map⊲ : X×X →

X satisfying for all x, y, z ∈ X,

(i) x ⊲ x = x,

(ii) (x ⊲ y) ⊲ y = x, and

(iii) (x ⊲ y) ⊲ z = (x ⊲ z) ⊲ (y ⊲ z).

The first axiom says every element is idempo-

tent; the second says that the operation is its own

right-inverse, and the third says that in place of

associativity, we have self-distributivity. Note the

parallel with the group axioms. Examples of kei

structures include Abelian groups with x ⊲ y =

2y − x and Z[t]/(t2)-modules with x ⊲ y = tx +

(1− t)y .

Giving a knot diagram an orientation (preferred

direction of travel) lets us relax the requirement

that the ⊲ operation is its own right-inverse, in-

stead requiring only that ⊲ has a right-inverse op-

eration ⊲−1. We then think of x ⊲ y as x crossing

under y from right to left and x⊲−1y as x crossing

under y from left to right. The resulting algebraic

object is called a quandle.

Definition. A quandle is a setX with maps⊲,⊲−1 :

X ×X → X satisfying for all x, y, z ∈ X,

(i) x ⊲ x = x,

(ii) (x ⊲ y) ⊲−1 y = (x ⊲−1 y) ⊲ y = x, and

(iii) (x ⊲ y) ⊲ z = (x ⊲ z) ⊲ (y ⊲ z).

It is not hard to show that in a quandle we have

x ⊲−1 x = x for all x, that the inverse operation

⊲−1 is also self-distributive, and that the two op-

erations are mutually distributive. Indeed, these

facts can be proved algebraically from the axioms

or graphically using Reidemeister moves. Exam-

ples of quandle structures include kei, which form

a subcategory of the category of quandles, as well

as groups, which are quandles under n-fold con-

jugation x⊲y = y−nxyn for n ∈ Z, Z[t±1]-modules

Figure 10. Framed version of Reidemeister I
move.

=

Figure 11. The Kishino virtual knot.

with x⊲ y = tx+ (1− t)y (called Alexander quan-
dles), and symplectic vector spaces with x ⊲ y =

x+ 〈x,y〉y.
The arc algebra arising from framed oriented

moves is called a rack.

Definition. A rack is a set with operations satisfy-
ing quandle axioms (ii) and (iii) but not necessarily
(i).

The rack axioms are equivalent to the seem-
ingly circular requirement that the functions fy :
X → X defined by fy(x) = x ⊲ y are rack auto-
morphisms. Racks blur the distinction between el-
ements and operators, as every element of a rack
is both an element and an automorphism of the
algebraic structure. Examples of rack structures
include quandles, modules over Z[t±1, s]/s(t+ s−
1) with x ⊲ y = tx + sy (known as (t, s)-racks),
and Coxeter racks, inner product spaces with x⊲y

given by reflecting x across y [9].

To form a more egalitarian algebraic structure,
we can divide an oriented knot diagram at both
over- and undercrossing points and let the semi-
arcs at a crossing act on each other as in Figure 13.
The semiarc algebra of an oriented knot is called
a biquandle; it is defined by a mapping of ordered
pairs B : X × X → X × X satisfying certain invert-
ibility conditions together with the set-theoretic
Yang-Baxter equation

(B × I)(I × B)(B × I) = (I × B)(B × I)(I × B)

where I : X → X is the identity map. See [10] for
more.

The category of biquandles includes quandles
as a subcategoryby definingB(x, y) = (y⊲x, x). An
example of a biquandle which is not a quandle is
an Alexander biquandle, a module over Z[t±1, s±1]
with B(x, y) = (ty + (1− ts)x, sx) where s 6= 1.

Including new operations at virtual, flat, and
singular crossings with axioms determined by the
corresponding interaction rules yields a family
of related algebraic structures such as virtual
biquandles, singular quandles, semiquandles, and
more.

Each generalized knot has an associated alge-
braic object determined by the types of crossings
it contains and the equivalence relation defining it.
Unoriented knots have fundamental kei; oriented
knots have fundamental quandles and biquandles;
framed oriented knots have fundamental racks,
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Figure 12. Involutory quandle (kei) operation and axioms.

and so forth. As with generalized knots them-

selves, our new algebraic objects are equivalence

classes of strings of symbols under Reidemeister-

style equivalence relations, which we can also
understand as algebraic axioms.

Much like groups, examples of kei, quandle,

rack, and biquandle structures are found through-

out mathematics, lurking just beneath the surface

in vector spaces, modules over polynomial rings,

Coxeter groups, Hopf algebras, Weyl algebras, per-

mutations, and more. It is important to note that
not every kei, quandle, and so forth comes from

a specific knot or link; rather, labelings of knots

by these algebraic objects are preserved by the

Reidemeister moves.

New Knot Invariants
Theorem (Joyce, 1982). There exists a homeomor-

phism f : S3 → S3 taking an oriented knot K to
another oriented knot K′ if and only if the funda-

mental quandles Q(K) and Q(K′) are isomorphic.

When he introduced the term “quandle” in his

1982 dissertation, David Joyce showed that the

fundamental quandle is a complete invariant of

classical knots up to ambient homeomorphism.

Roger Fenn and Colin Rourke later showed that

the fundamental rack classifies irreducible framed

oriented links in certain three-manifolds. Despite
these powerful results, perhaps due to the im-

practicality of comparing algebraic structures

described by generators and relations, most knot

theorists shunned arc algebras in favor of other

invariants. Indeed, kei, quandles, and racks have

been independently rediscovered sufficiently often

Figure 13. Biquandle operations.

to have accumulated an impressive collection of

alternative names, such as “crystals”, “distributive

groupoids”, and “automorphic sets” [16, 20, 3].

As a complete invariant up to ambient home-

omorphism, the knot quandle determines many

other classical knot invariants. Indeed, many well-

known invariants can be easily derived from the

knot quandle: the fundamental group of the knot

complement and the Alexander invariants, for in-

stance, can be computed from a presentation of

the knot quandle. The hyperbolic volume of a

knot has recently been shown to be a quandle

cocycle invariant [12]. Even the celebrated Jones

polynomial can be understood in terms of de-

formations of matrix representations of arc and

semiarc algebras [7].

With the combinatorial revolution in knot the-

ory, interest in arc and semiarc algebras and their

knot invariants has been reinvigorated. One use-

ful method for getting computable invariants from

arc algebras is to compute the set of homomor-

phisms from the knot’s fundamental arc algebra

into a target arc algebra T . Such a homomorphism

assigns an element of the target object to each arc

in a diagram of the knot, and such an assignment

determines a unique homomorphism provided the

crossing relations are satisfied. These homomor-

phisms can be pictured as “colorings” of the knot

diagram by elements of T .

If the target object T is finite, then the set

of homomorphisms will likewise be finite, and
we can simply count homomorphisms to get a

computable integer-valued invariant known as a

counting invariant. Figure 14 shows all colorings

of the trefoil knot by the three-element kei R3 with

operation table given by

⊲ 1 2 3

1 1 3 2
2 3 2 1
3 2 1 3.

The finiteness condition for coloring objects is not

required; if the target kei is infinite but has a topol-

ogy, for instance, then the set of homomorphisms

itself is a topological space whose topological

properties then become knot invariants [22].

Counting invariants are only the beginning; any

invariant of algebraically labeled knot diagrams
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Figure 14. Kei colorings of the trefoil by R3R3R3.

defines an enhancement of the counting invariant

by taking the multiset of invariant values over the

set of colorings of the knot. One simple example

uses the cardinality of the image subkei of a

kei homomorphism; instead of counting “1” for

each kei homomorphism f : Q(K) → T , we record

t |Im(f )|, obtaining a polynomial invariant

p(t) =
∑

f :Q(K)→T

t |Im(f )|,

which has the original counting invariant as p(1).

For example, the trefoil in Figure 14 has counting

invariant 9 with respect toR3 and enhanced invari-

ant p(t) = 3t +6t3. A more sophisticated example

of an enhancement is the family of CJKLS quandle

cocycle invariants which associate a Boltzmann

weight φ(f) with each quandle coloring f , deter-

mined by a cocycle in the second cohomology of

T [5]. In true combinatorial-revolutionary spirit,

such two-cocycles have a geometric interpretation

as virtual link diagrams [4].

Enhancement of counting invariants in which

we replace a cardinality with a set is a basic

example of a more general phenomenon known

as categorification, in which simpler structures

are replaced with higher-powered algebraic struc-

tures. Pioneered by mathematical physicists such

as Louis Crane and John Baez, categorification

involves replacing sets with categories, operations

with functors, and equalities with isomorphisms.

A prime example is Khovanov homology, in which

a combinatorial algorithm for computing the Jones

polynomial from a knot diagram is turned into

a graded chain complex whose Euler character-

istic is the Jones polynomial, with the homology

groups forming a new, stronger invariant [18]. Sim-

ilar methods have been applied to the HOMFLYPT

polynomial and various other quantum knot in-

variants, resulting in new, stronger categorified

knot invariants. This remarkable idea has sparked
a firestorm of new research too vast to adequately

address in this space. Nonetheless, we once again

see the combinatorial revolution in action, as what

was previously merely notation has itself become
a mathematical object of interest.

Not Just for Knot Theorists
While arc and semiarc algebras such as quan-

dles and racks have obvious utility in defining
knot invariants, fundamentally they are basic al-

gebraic structures analogous to groups or vector

spaces whose potential for applications elsewhere

in mathematics is still largely unexplored. The

fact that groups are first encountered as sets
of symmetries does not limit their applications

to geometric rotations and reflections; similarly,

despite their knotty origin, quandles, racks, and

biquandles are likely to have many applications

not tied to knots and links.
Starting with a symmetry group, if we take

the subset consisting of only rotations, we get

a subgroup; taking the subset consisting of only

reflections, however, yields not a subgroup but a
subkei. Conjugation in a group is a quandle oper-

ation; the resulting conjugation quandles quantify

the failure of commutativity by turning it into

an algebraic structure, analogously to commuta-

tors turning associative algebras into Lie algebras.
Indeed, kei, quandles, and racks can be found

lurking wherever operations are noncommutative.

The applications of generalized knots and knot-

inspired algebraic structures are just starting to
be explored, and many open questions remain.

One rich source of project ideas comes from

a simple question: anywhere groups are found,

we can ask what results when we replace the

group with a kei, quandle, or rack. Replacing the
knot group with the knot quandle eliminates the

need to worry about the peripheral structure,

for example, and replacing groups with quandles

simplifies monodromy computations analogously
[3, 25]. Work is currently under way on the Dehn

quandle of a surface (analogous to the mapping

class group), as well as on quandle and rack

homology, quandle Galois theory, and much more

[26, 6]. What arc algebra structures might be
lurking in elliptic curves, dynamical systems, or

tensor categories?

Knot diagrams have now come full circle, from

schematic representations of geometric curves in

space to interesting mathematical objects in their
own right. The shift from thinking of knots as

topological to typographical objects gives us new

flexibility and opens the door to new discoveries
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and applications. As was the case with complex

numbers, there has been some resistance to virtual

knot theory from the old guard, though this

author’s subjective impression is that the tide is

turning as more knot theorists embrace the new

generalized knot theory and its related algebraic

structures. In addition to providing new technical

tools for knot theorists and other mathematicians,

generalized knots provide a novel perspective on

what it means to be a knot.
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