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ANNwAzs OF MATHEMATICS 

Vol. 52, No. 2, September, 1950 

ON THE TOTAL CURVATURE OF KNOTS 
BY J. W. MILNOR 

(Received October 5, 1949) 

Introduction 

The total curvature f S"(s) I ds of a closed curve C of class C", a quantity 

which measures the total turning of the tangent vector, was studied by W. 

Fenchel, who proved, in 1929, that, in three dimensional space, I ]"(s) I ds _ 

2'n, equality holding only for plane convex curves. K. Borsuk, in 1947, extended 
this result to n dimensional space, and, in the same paper, conjectured that the 
total curvature of a knot in three dimensional space must exceed 47r. A proof 
of this conjecture is presented below.' 

In proving this proposition, use will be made of a definition, suggested by R. H. 
Fox, of total curvature which is applicable to any closed curve. This general 
definition is validated by showing that the generalized total curvature K(C) is 

equal to I \"() I ds for any closed curve C of class C". Furthermore, the 

theorem of Fenchel and Borsuk is true for any closed curve, if the new definition 
of total curvature is used. 

Closely related to the concept of total curvature is a new invarient /Z ( ), the 
crookedness of the isotopy type ( of closed curves. This is either a positive in- 
teger or oc, according as the type (E is or is not represented by a polygon. In 
terms of the concept of crookedness it is possible to provide an alternative 
formulation of the generalized total curvature as a Lebesgue integral over an 
(n - 1) dimensional sphere. The crookedness,4(Cs) of a type (S of simple closed 
curves is connected with the total curvatures of its representative curves C by 
the fundamental relation 2,ru( S) = g.l.b. K(C). Generally speaking this lower 
bound is not attained. 

In the course of the paper several interesting incidental results are obtained: 
if the total curvature of a simple closed curve is finite, then there is an inscribed 
polygon equivalent to it by isotopy, and also if the curve is knotted there must 
be a plane which intersects it in at least six points. 

I am indebted to R. H. Fox for substantial assistance in the preparation of 
this paper. 

1. The Total Curvature of a Closed Polygon 

By a closed polygon P in Euclidean n-space H', n > 1, will be meant a finite 
sequence of points a, , , . ctm-i, am = ao , of which is required only that 

1 Since the completion of this paper, there has appeared an independant proof, by I. 

FAry, that the relation f "(s) I ds 2 47r holds for all knots [6]. 
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$i 5 ai+, , and the line segments aiai+1 for i = 0,1, ... , m - 1. For convenience 
let ai, where i is any integer, signify a(X) , where (i) is the least positive residue 
mod m. The terms point and vector will be used synonymously, with every 
vector referred to a common origin, so that ai+1 - ai means the vector equal in 
length and parallel to the line segment aiai+1 . Denote by ac the angle between 
the vectors a+?1 - as and a, - ai1 satisfying 0 < as ir. By the total curvature 
K(P) of a closed polygon P is meant the angle sum E., ai. 

1.1 LEMMA.2 The adjunction of a new vertex to a closed polygon cannot decrease 
its total curvature. The curvature may remain constant if either the new vertex a3 
and the two adjacent vertices aj-1 and aj+l are collinear or ap-2 , 1 Ia X , aj+X l , and 
aj+2 are coplanar. Otherwise it must definitely increase. 

Let P' be the closed polygon with vertices a1 , a2 , - , aC-1 , aj+, * , amC. 

Let P be the closed polygon with vertices aL, a2 , .* , a X1 , aX , ? ,jl X. *X 

obtained from P' by adjoining the vertex aj . Denote by a' for i =1, 2, 

-2 (X. 

FIG. 1 

j - 1,j + 1, *, m the respective exterior angles of P', and by ai for i = 

1, 2, * j - 1,j, j + 1, , m the respective exterior angles of P. Denote by 
, the angle between a -cai1 and aj+l - j , and by 3+ the angle between 
aj+l- aj- and aj+l - aj. (See Fig. 1.) 

By the triangle inequality for spherical triangles ai-, + 4- > aj-a , where the 
equality can hold only if the three angles lie in a plane, that is, only if aj.2, 
j , cja , and aj+l are coplanar. Similarly aj+l + A+ > aia+, where the equality 

can hold only if aj-1, aj, a+ja , and aj42 are coplanar. From the triangle with 
vertices aj1 , ai , and aj+l we have /- + /+ = a3 . Therefore 

K(P) - K(P') = (aj-1 - ai-1) + aj + (aj+l ai4l) 

> -O- +ex - = O. 

Hence K(P) > K(P') and the equality can hold only if either aj2 , aj-1, a , 
aj+l , and aj+2 are coplanar or aj-, aj , and aj+l are collinear. 

2 This proof is essentially the same as a proof given by Borsuk [1. pp. 254-256]. 
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1.2 COROLLARY. If the vertices ai-2 , ,j-1 , aj , and aj+1 of a closed polygon P 
are not coplanar, and the vertex aj is replaced by a vertex a' which lies on the line 
segment ajaj+1 , then K(P) is decreased. 

2. The Total Curvature of a Curve 

By a closed curve C in Euclidean n-space H' will be meant a continuous vector 
function X(t) = (&l(t), , Xn(t)) of period 1 which is not constant in any t- 
interval. In particular any polygon can be described in this manner; it will be 
convenient to regard a polygon as a closed curve, ignoring the distinction between 
different parameterizations. A closed curve X(t) is simple if X(t1) = X(t2) only 
when (t1 - t2)/l is an integer. 

rn/ ' 

FIG. 2 

A closed polygon P with vertices al , , am is said to be inscribed in a closed 
curve X(t) if there is a set of parameter values ti such that ti < ti+1 , ti+m-ti + 1, 
and as = X(ti) for all integral values of i. 

2.1 LEMMA. For any closed polygon P, K(P) = l.u.b. {K(P')} where P' ranges 
over all polygons inscribed in P. 

If P is a polygon having two or more vertices coincident, it can be represented 
as the limit of a sequence of polygons with all vertices distinct; hence it only 
remains to prove the lemma for P with all vertices distinct. 

If PO is a representative inscribed polygon whose vertices include all but m 
of the vertices of P, we may adjoin the remaining vertices of P one by one to 

P, producing a sequence of polygons PO' , P' P. By 1.1, K(Po) < 

K(Pf) <? ... * < K(Pf); but K(P') = K(P). Therefore K(P) = l.u.b. {iK(P')}. 
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For each closed curve C define the total curvature by K(C) = l.u.b. {K(P) } where 
P ranges over all polygons inscribed in C. If C is itself a polygon, the preceding 
lemma shows that this definition is consistent with the definition of Section 1. 

2.2 rTHEOREM. If C is a closed curve of class C"' pararneterized by arclength s, 

then K(C) = I & (s) I ds. 

If act = -(S '), , , = X(s') are the vertices of a polygon Pm inscribed in 
C, such that lim, ax maxi { (sim - s')} = 0, it will firstbeshownthatlimm boK(Pm) 

(s) ds (Compare Fig. 2). 

Define s2 = 2 (si + S'+1) for every i and m. Denote by 62 the angle between 

,'(Sm l) and t'(S2). The vector X'(s) describes a curve L of length f X" (s) I ds 

on the unit sphere S'-'. The vectors '(s2) form the vertices of a spherical poly- 
gon of length O2= m 62 which is inscribed in L. Thereforelimnb m 62 = 

I X' (s) Ids. 
c 

Since X" (s) is uniformly continuous, for each E > 0 there is a 6 > 0 such that 
l "(u)- "(v) < e for all u - v < 6. From the identity 

m 
(S - (s2) (s2 - sT),,(,m) + f f [X"(u) - X"(0)] du dv i+ i+ S i m~~~~~~~S ~ 

? fn Li " E "(s2) - &(u)] du d 

we have 

|(s)m m - X(9) ) < (- +- s) 'E whenever maxi { (sm+, - s7) } < 6. si+i-si 4 

If 2m is the angle between (sm+) - (sm) and '(S2) then sin m2 < (s2+, - s') 
E/4, since the end point of the vector (T(s524+i) - X(s2if)) (sm2+ - s2) lies within a 
sphere of radius (Smi+, - S'i) E/4 about the end point of the unit vector X'(V2). 
Hence for sufficiently small E we have '2 < 2 sin '2 < (s2i - sit) E/2. The angle 
between X(si+i) - ~(sT,) and X(sT) - x(s2m-) is aT , while that between X'(9T) and 

X'(S, l) is ri . Therefore ai <= O + m+ ,mi- and 62 < aim + sp? +'pi, so 
that I 0 - 62 < ('in+, - sm,-) E/2, and Z Em.=1 am -ZEr=, 62 < lE, where 

1 is the length of C. Therefore 
m m 

lim K(Pm) = lim E ai = lim E I = |(s) ds. 
m-4o00 m-00 i=1 mn-c00 J c 

In order to show that I C (s) ds = l.u.b. { K(P) } for P inscribed in C, it only 

remains to show that K(P) < I " '(s) t ds. 
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Given any polygon Pk inscribed in C, we may form a sequence of polygons 
Pm for m = k, k + 1, ... by adjoining vertices to Pk so that 

limma., maxi { (si+1 - s,)} = 0. 

By 1.1 K(Pk) ? K(Pk+1) < - - * but limid.. K(Pm) = (s) ds, and 

therefore K(P7-) ? f s "(s) ds. 

3. The Crookedness of a Closed Curve 

For each closed curve C and each unit vector b, define A (C, b) to be the number 
of maxima of the function b- (t) (i.e. the number of parameter values to for 
which b* (to) ? b- (t) for t within some neighborhood of to) in a fundamental 
period. For each closed curve C define bt(C) = minb {Wt(C, b)}. We may call 
,u(C) the crookedness of C. 

For every vector ai+1 - ai in the space H' define bi = (ai+1 - ai)/ I ai+1 - ai 
According to the convention introduced earlier, bi also denotes a point on the 
unit sphere S"1, the spherical image of ai+1 - ai. Given a polygon P with 
vertices al , a2 , ... , am, a spherical polygon Q is formed on Sn'- by joining 
each bi-, to bi by a great circle arc of length ai . This spherical polygon Q 
is called a spherical image of P, and is unique unless for some j the vector 
bj = - j+l . Note that it may happen that bj = bj+l . 

3.1 THEOREM.3 For any closed curve C in Hn, n > 2, the Lebesgue integral 

| u(C, b)dS, where b ranges over the unit sphere, exists and is equal to 

(Mn_1K(C))/21r, where 3in_ = (27r"12)/F(n/2) is the measure of S" 1. 
We will first consider the case in which the curve is a polygon P. For every 

point b of S"', let S,-2 denote the great sphere of S"'_ which has a pole at b. 
An edge bj-lbj of Q crosses Sn-2 if and only if b (aj+l - aj) and b (aj - aj1) have 
opposite sign, so that b aj is a maximum or minimum of b (t). Therefore, if 
Sb-2 contains no vertex of Q, (i.e. no edge of P is perpendiuclar to b) the number 
of intersections of Q with Sb2 is 2,u(P, b). The set of points b for which Sb2 

contains some vertex of Q is the union of the finite collection of great spheres 
Sb n2; in each component of the complement with respect to Sn-1 of Ui Sbn,2 the 

function 2M(P, b) is constant. The integral f 2p(P, b)dS, where dS is the 
sn-1 

element of surface on Sn-1, is therefore defined. The set of points b for which 
Sb-2 meets a given segment bi-,bi of length 0 ? ai _ r is a "double lune" 
bounded by the great spheres S'-27 and Ss n2. Thus the contribution of bi-,bi to 
2,4(P, b) is 1 if b is an interior point of this lune and 0 if b is an exterior point. 
The measure of this lune is (afiMIn,1)/r where Mn,1 is the measure of the entire 
sphere. Consequently f 

2y(P, W) dS = __E ai 
m 

K (P 
,-1 ~~~~7r it 1 7r 

8 This theorem is related to Crofton's formula. Cf. [3. p. 811. 
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If C is an arbitrary closed curve g(t), let Pm be a set of inscribed polygons 
gm(t) with vertices a' = a', , = g(t') such that each Pm contains all 
the vertices of Pm-1 and satisfying limnm.A K(Pm) = K(C) and limm.x maxi 

- (tm ,-tm) } = 0. The values of b for which b (t) or any b *m(t) has an interval 
of constancy form a set of measure zero, and therefore have no effect on the 
integral. Such values will be ignored for the remainder of the proof. 

We first show that ,t(C, b) = limm-oo A(Pm , b). It is certainly true that 
j(C, b) > i(Pm , b) > i(Pm-i X b). If ,t(C, b) < o, it is possible to select a neigh- 
borhood of each of the A (C, b) maxima of b* g(t) and of each of its minima suffi- 
ciently small so that a polygon with a vertex in each of these neighborhoods 
must have at least A (C, b) maxima; which is certainly true of Pm for m sufficiently 
large. If A (C, b) = Oo, the set of values of t for which b (t) is a maximum must 
contain a denumerable subset {t2i} such that either to < t2 < . .. < liming t2i < 
to+ 1 or to > t2 > .*. > limli- t2i > to - 1. In either case we may select a series 
of intermediate values t2i+1 such that each b (t2i) > b (t2i+1) and b (t2i) > 
b-* (t2i-1). Given any 2j < oc we may select neighborhoods of the g(ti), for 
i < 2j, so small that any polygon with at least one vertex in each neighborhood 
has at least j - 1 maxima; which is true of Pm for m sufficiently large. Therefore 
A(Pm , b) increases without finite bound as m -* o. Each of the integrals f Pu(Pm, b) dS exists; and the nondecreasing sequence of positive functions 

Ai(Pm X b) approaches ,4(C, b). Therefore4 the integral fI (C, b) dS exists and 

equals 1ime- .t(Pm, b) dS = limm_:+ (Mn-1) K(Pm) =(Mn1) K(C)- 

3.2 COROLLARY. K(C) ? 2irA(C). 

Since Kt_1 K(C) = f 1(C a) dS? f u(C) ds = Mn11i(C) 2ir C -1 n- l 

By a convex curve will be meant a closed plane curve described by g(t) such 
that any line contains g(t) either for not more than two values of t within a 
fundamental period or for all values of t within some interval. 

3.3 LEMMA. The necessary and sufficient condition that a closed polygon P in 
H2 be convex is that for every b either A(P, b) = 1 or ,A(P, b) = o 

It is clear that this condition is necessary. Suppose that P is a closed plane 
polygon such that either li(P, b) = 1 or 4(P, b) = oo for each b in the plane. 
For any b such that A (P, b) = 1, any line perpendicular to b will intersect P in 
at most two points. If b is a vector for which lu(P, b) = Oo, and if H' is a line 
perpendicular to b which intersects P a finite number, say r, of times, then it is 
always possible to rotate H1 about one of its points of intersection with P in the 
proper direction so that r is not decreased. Hence there is a b and a H' perpen- 
dicular to b such that Az(P, b) < cc and the number of intersections of H' 
with P is f ? r. But by the first case, f < 2, and therefore r ? 2. 

4 [4. Theorem 12.6 p. 281. 



254 J. W. MILNOR 

3.4 THEOREM. For any closed curve C, K(C) ? 2r. The equality holds if and only 
if C is convex. 

Since ,g(C) ? 1 for every curve, or since every curve has an inscribed polygon 
P for which K(P) = 2r, we have K(C) ? 2r. Since any curve which is not convex 
has an inscribed polygon which is not convex, and since a polygon inscribed in a 
convex curve must be convex, it only remains to prove the second portion of the 
theorem for polygons. 

It is proved in plane geometry that the sum of the exterior angles of a convex 
polygon is 2r. If there were a non-planar polygon P for which K(P) = 2r, we 
could select four consecutive non-coplanar vertices (neglecting vertices for which 
ai = 0). By 1.2 there would be a new polygon P' such that K(P') < K(P) = 27, 
which is impossible. If there were a non-convex plane polygon P for which 
K(P) = 2w, then 3.3 states that there would be a direction b for which 1 < 
,u(P, b) o so, but there is a neighborhood of any such 6 within which 1u(P, b) is 

constant. This means that K(P) = (P, b) dS > f dS = 2X. 

4. The Curvature and Crookedness of Isotopy Types of Curves 

In H' the closed curve described by X(t) of period 1, and the closed curve de- 
scribed by ;(t) of period 1 are said to be equivalent by isotopy if there is some 
isotopy of Hn onto itself, which transforms X(ul) into ~(ul) for all u. 

By a curve type S in Hn is meant an equivalence class of closed curves under 
isotopy. A curve type is simple if the representative closed curves are simple. 

A simple curve type S and its members are said to be unknotted if (E is that 
type which contains all circles. If a simple curve type contains no circles then 
the type and its members are said to be knotted. 

A curve type C and its members are said to be tame' if G contains a polygon. 
Otherwise they are said to be wild.' It is well known that in H' every simple 
closed curve is unknotted. In H n for n > 3, every simple tame curve is un- 
knotted. 

For each curve type A, define K(G) = g.l.b. K(C) and A(G-) = min ,(C), where 
C ranges over all members of (S. 

4.1 LEMMA. For each c and p in Jfn-1 such that I c- < K r, there is an iso- 
topy, f (T), I 0 tu 1, of H n-1 onto itself which transforms c into P and leaves 
fixed all points of H'-1 outside the (n - 2)-sphere of radius r and center c, such 
that fco(T) is a continuous function of u, I, c, and p. 

For example: 

= - ui X 7 ] (P - c) for I -c I r. 

forj - c! _ r. 

4.2 THEOREM. For any simple closed curve C, such that 1t(C) < xc, there is a 
polygon P inscribed in C and equivalent to C by isotopy. 

5 This definition was given by Fox and Artin [51. 
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If b is a unit vector for which AL(C, b) < xo, there are a finite set of values 
t1 < t2 < . < t2A(Cb) < t& + 1, for which b * (t) has a maximum or minimum. 
About each point X(t-) construct a cylinder Z-1(0) with generators parallel to 
b which intersects C in exactly two points X(Q) and i(tt) such that both lie on a 
base of the cylinder and such that ((t+) is the center of this base. It will first be 
shown that there is an isotopy of the closed n-cell bounded by Zi'-(0) onto 
itself which leaves Z '(0) fixed and transforms the curve segment X(t) for 
C < t < t+ onto the polygonal line X(t), X(ti), X(tt). 

Each hyperplane H'-1 perpendicular to b which intersects Z,-1(O) intersects 
it in a sphere S,-2. Perform the isotopy of each H'-' onto itself which transforms 
the curve segment X(t) for ti _ t <tt into the axis of the cylinder, and which 
leaves all points outside of the n-cell bounded by the cylinder fixed, as defined 
by 4.1. Select a continuous sequence of coaxial cylinders Z"'(v), 0 ? v < xc, 
such that any Zl'G(3) is contained within all Z'-1(v) with v < v, such that each 
cylinder intersects C only in the center of one base and in one other point of that 
base, and such that Z-'(v) tends to the point x(ti) as v -* oo. Rotate each 
Z -l(v) about its axis so that each point &(t) for C ? t < ti is transformed into 
the plane determined by g(t7) and the axis of the cylinders. Since we have trans- 
formed g(t) for tU ? t < tt onto a plane curve within Zn-1(0), it is certainly 
possible to transform it onto the polygonal line (t), g(ti), g(tj), still within 
Z-1 (0), producing an equivalent curve C described by f(t). This curve is divided 
into 4,g(C, b) = 4g(C, b) distinct segments by the points i(t+) and g(t7). If 
g > 0 is the g.l.b. of the distances between distinct and nonconsecutive curve 

Zn-1 segments, then for each point of C which is not within any of the Zi we may 
construct the sphere Sn 2 which has its center at the point, lies in a hyperplane 
perpendicular to b, and has radius g/3. Since no two of these spheres can inter- 
sect, we have in effect, constructed a tube around each curve segment outside the 
cylinders, with no two tubes intersecting. It is now possible to inscribe a polyg- 
onal line, lying completely within the tube, in each segment of C. Perform the 
isotopy of each H'-1 perpendicular to b onto itself which transforms each of these 
curve segments onto the corresponding polygonal line and which leaves fixed 
all points outside of the Sn2. CWte have thus transformed C, and therefore C, into 
an inscribed polygon P, equivalent by isotopy. (Note for future reference that 
(C, b) = A (P, b).) 
4.3 COROLLARY. The necessary and sufficient condition that a simple curve type 

(S be tame is that 4(S) < oo 
4.4 COROLLARY. The total curvature of a tame knot cannot equal the curvature of 

its type. 
Assume that C is a tame knot of type (E with K(C) = K(Q,). Let P be a polygon 

of type S inscribed in C. Then K(P) < K(C). Since P cannot lie in any plane, we 
may select four consecutive non-coplanar vertices (if we ignore vertices for which 
ai= 0). By 1.2 we may select a new polygon P, still a member of A, and having 
K(P) < K(P) < K(C) = K(G); which is impossible. 

4.5 COROLLARY. The crookedness of any knot is greater than or equal to 2. 
If C is a curve with ,u(C) = 1, then, in the proof of 4.2 we can select the two 
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cylinders with a common base. The first isotopy will then transform C into a 
plane quadrilateral, which is certainly unknotted. 

4.6 COROLLARY. The total curvature of any knot is greater than 4%r. 
4.7. THEOREM. If ( is a simple curve type, then K( A) = 2iry( C). 
It has already been shown that K(C) > 2iryu(C) for any C e G and therefore 

that K(G) > 2ry(G). If A(G) = co, this proves the proposition. If A(G) < co, 
we may select a curve C of G and a direction b such that ,u(C, b) = Au(G). By 
4.2 there is a polygon P which is a member of G such that ,A(P, b) = ,A(C, b). 
For convenience we will select a new coordinate system so that b is parallel to 
the xl axis. We may then define the isotopy FU(x, X2, X3, I..., Xn) = 

(X1 , UX2 , UX3, ... , ux*,) for 0 < u < 1. This evidently transforms P into an 

7': AE$C 
\V \ tt ;F:AR:AEPZ 

FIG. 3 

equivalent polygon Pu, such that ,'(P , b) = ,u(P, b). If ai , 1 < i < m, is the 
set of vertices of P. , we may divide it into four subsets: 

(a) vertices a'U such that b* a,_ I < b* ai < b* as+X 
(b) vertices ai' such that b * ait 1 > b * aS' > b *a 
(c) vertices ai' such that braid < b a~' > b-a4X 
(d) vertices as such that b *a!' > b * at < b*a'+. 

(If an equality were to hold, we would have Au(P. , b) = co.) Evidentlythe number 
of vertices in (c) equals the number in (d) equals Au( ). However for members of 
(c) and (d), lim~o (a') = ir; whereas for (a) and (b), limb~o (a') = 0. Therefore 
limb-o K(Pu) = 2rp( C). 

As another interesting consequence of Theorem 4.2, we have the following. 
4.8 THEOREM. Given a knot C in H3 for which ji(C) < oo, there is a plane whose 

intersection with C consists of at least six components. 
Since every such C has an inscribed polygon which is knotted, and since a 

plane intersects a curve at least as many times as it intersects an inscribed 
polygon, it only remains to prove the theorem for knotted polygons. If there is a 
polygon which does not satisfy the theorem, there must be one having a minimum 

number of sides. If P is such a polygon, we have: 4r < K(P) = 2 A j(P, b) dS. 

Therefore there must be some unit vector b such that 2 < ji(P, b) and also 
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b a3 # ba* k for every pair of distinct vertices aj and ak of P. If we select a plane 
perpendicular to b and move it parallel to itself in the direction of b until it 
intersects P, it must first intersect P in a minimum (i.e. an aj such that b aj < 
b -a.,). After this it will intersect P in two points, until it intersects another 
minimum, after which it will have four intersections. If it next reaches another 
minimum, the theorem is proved. If it next reaches a maximum, there will then 
be only two intersections. Join these two points by a line segment, so that two 
new polygons are formed by this segment and the sides of P. (See Fig. 3.) At 
least one of these new polygons, P1 , must be knotted. Since /u(P) > 3, each of 
the new polygons P, and P2 must have at least five sides. Since P2 has five or more 
sides, P1 must have fewer sides than P; and therefore there must be some plane 
intersecting P, in six or more components. It is clear that this plane must 
intersect the original polygon P itself in six or more components. 
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