
Chapter 3
Unramified Milnor–Witt K-Theories

Our aim in this section is to compute (or describe), for any integer n > 0,
the free strongly A

1-invariant sheaf generated by the n-th smash power of
Gm, in other words the “free strongly A

1-invariant sheaf on n units”. As we
will prove in Chap. 5 that any strongly A

1-invariant sheaf of abelian groups
is also strictly A

1-invariant, this is also the free strictly A
1-invariant sheaf on

(Gm)∧n.

3.1 Milnor–Witt K-Theory of Fields

The following definition was found in collaboration with Mike Hopkins:

Definition 3.1. Let F be a commutative field. The Milnor–Witt K-theory
of F is the graded associative ring KMW∗ (F ) generated by the symbols [u],
for each unit u ∈ F×, of degree +1, and one symbol η of degree −1 subject
to the following relations:

1 (Steinberg relation) For each a ∈ F× − {1} : [a].[1− a] = 0
2 For each pair (a, b) ∈ (F×)2 : [ab] = [a] + [b] + η.[a].[b]
3 For each u ∈ F× : [u].η = η.[u]
4 Set h := η.[−1] + 2. Then η . h = 0

These Milnor–Witt K-theory groups were introduced by the author in
a different (and more complicated) way, until the previous presentation was
found with Mike Hopkins. The advantage of this presentation was made clear
in our computations of the stable πA

1

0 in [50,51] as the relations all have very
natural explanations in the stable A

1-homotopical world. To perform these
computations in the unstable world and also to produce unramified Milnor–
Witt K-theory sheaves in a completely elementary way, over any field (any
characteristic) we will need to use an “unstable” variant of that presentation
in Lemma 3.4.
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50 3 Unramified Milnor–Witt K-Theories

Remark 3.2. The quotient ring KMW∗ (F )/η is the Milnor K-theory KM∗ (F )
of F defined in [47]: indeed if η is killed, the symbol [u] becomes additive.
Observe precisely that η controls the failure of u �→ [u] to be additive in
Milnor–Witt K-theory.

With all this in mind, it is natural to introduce the Witt K-theory of F
as the quotient KW∗ (F ) := KMW∗ (F )/h. It was studied in [54] and will also
be used in our computations below. In loc. cit. it was proven that the non-
negative part is the quotient of the ring TensW (F )(I(F )) by the Steinberg
relation << u >> . << 1 − u >>. This can be shown to still hold in
characteristic 2.

Proceeding along the same line, it is easy to prove that the non-
negative part KMW

≥0 (F ) is isomorphic to the quotient of the ring

TensKMW
0 (F )(K

MW
1 (F )) by the Steinberg relation [u].[1− u]. This is related

to our old definition of KMW
∗ (F ). ��

We will need at some point a presentation of the group of weight n Milnor–
Witt K-theory. The following one will suffice for our purpose. One may give
some simpler presentation but we won’t use it:

Definition 3.3. Let F be a commutative field. Let n be an integer. We let
K̃MW

n (F ) denote the abelian group generated by the symbols of the form
[ηm, u1, . . . , ur] with m ∈ N, r ∈ N, and n = r−m, and with the ui’s unit in
F , and subject to the following relations:

1n (Steinberg relation) [ηm, u1, . . . , ur] = 0 if ui + ui+1 = 1, for some i.
2n For each pair (a, b) ∈ (F×)2 and each i: [ηm, . . . , ui−1, ab, ui+1, . . . ] =

[ηm, . . . , ui−1, a, ui+1, . . . ] + [ηm, . . . , ui−1, b, ui+1, . . . ]+ [ηm+1, . . . , ui−1,
a, b, ui+1, . . . ].

4n For each i, [ηm+2, . . . , ui−1,−1, ui+1, . . . ]+2[ηm+1, . . . , ui−1, ui+1, . . .] = 0.

The following lemma is straightforward:

Lemma 3.4. For any field F , any integer n ≥ 1, the correspondence

[ηm, u1, . . . , un] �→ ηm[u1] . . . [un]

induces an isomorphism

K̃MW
n (F ) ∼= KMW

n (F )

Proof. The proof consists in expressing the possible relations between
elements of degree n. That is to say the element of degree n in the two-
sided ideal generated by the relations of Milnor–Witt K-theory, except the
number 3, which is encoded in our choices. We leave the details to the reader.

��
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Now we establish some elementary but useful facts. For any unit a ∈ F×,
we set < a >= 1 + η[a] ∈ KMW

0 (F ). Observe then that h = 1+ < −1 >.

Lemma 3.5. Let (a, b) ∈ (F×)2 be units in F . We have the followings
formulas:

1) [ab] = [a]+ < a > .[b] = [a]. < b > +[b];
2) < ab >=< a > . < b >; KMW

0 (F ) is central in KMW
∗ (F );

3) < 1 >= 1 in KMW
0 (F ) and [1] = 0 in KMW

1 (F );
4) < a > is a unit in KMW

0 (F ) whose inverse is < a−1 >;
5) [ab ] = [a]− < a

b > .[b]. In particular one has: [a−1] = − < a−1 > .[a].

Proof. (1) is obvious. One obtains the first relation of (2) by applying η to
relation 2 and using relation 3. By (1) we have for any a and b: < a > .[b] =
[b]. < a > thus the elements < a > are central.

Multiplying relation 4 by [1] (on the left) implies that (< 1 > −1).
(< −1 > +1) = 0 (observe that h = 1+ < −1 >). Using 2 this implies that
< 1 >= 1. By (1) we have now [1] = [1]+ < 1 > .[1] = [1] + 1.[1] = [1] + [1];
thus [1] = 0. (4) follows clearly from (2) and (3). (5) is an easy consequence
of (1)–(4). ��
Lemma 3.6. 1) For each n ≥ 1, the group KMW

n (F ) is generated by the
products of the form [u1]. . . . .[un], with the ui ∈ F×.

2) For each n ≤ 0, the group KMW
n (F ) is generated by the products of

the form ηn. < u >, with u ∈ F×. In particular the product with η:
KMW

n (F ) → KMW
n−1 (F ) is always surjective if n ≤ 0.

Proof. An obvious observation is that the group KMW
n (F ) is generated by

the products of the form ηm.[u1]. . . . .[u�] with m ≥ 0, � ≥ 0, � −m = n and
with the ui’s units. The relation 2 can be rewritten η.[a].[b] = [ab]− [a]− [b].
This easily implies the result using the fact that < 1 >= 1. ��

Remember that h = 1+ < −1 >. Set ε := − < −1 >∈ KMW
0 (F ). Observe

then that relation 4 in Milnor–Witt K-theory can also be rewritten ε.η = η.

Lemma 3.7. 1) For a ∈ F× one has: [a].[−a] = 0 and < a > + < −a >= h;
2) For a ∈ F× one has: [a].[a] = [a].[−1] = ε[a][−1] = [−1].[a] = ε[−1][a];
3) For a ∈ F× and b ∈ F× one has [a].[b] = ε.[b].[a];
4) For a ∈ F× one has < a2 >= 1.

Corollary 3.8. The graded KMW
0 (F )-algebra KMW

∗ (F ) is ε-graded commu-
tative: for any element α ∈ KMW

n (F ) and any element β ∈ KMW
m (F ) one

has
α.β = (ε)n.mβ.α

Proof. It suffices to check this formula on the set of multiplicative
generators F×
{η}: for products of the form [a].[b] this is (3) of the previous
Lemma. For products of the form [a].η or η.η, this follows from the relation
3 and relation 4 (reading ε.η = η) in Milnor–Witt K-theory. ��
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Proof of Lemma 3.7. We adapt [47]. Start from the equality (for a �= 1)
−a = 1−a

1−a−1 . Then [−a] = [1− a]− < −a > .[1 − a−1]. Thus

[a].[−a] = [a][1− a]− < −a > .[a].[1− a−1] = 0− < −a > .[a].[1− a−1]

=< −a >< a > [a−1][1− a−1] = 0

by 1 and (1) of lemma 3.5. The second relation follows from this by applying
η2 and expanding.

As [−a] = [−1]+ < −1 > [a] we get

0 = [a].[−1]+ < −1 > [a][a]

so that [a].[a] = − < −1 > [a].[−1] = [a].[−1] because 0 = [1] = [−1]+ <
−1 > [−1]. Using [−a][a] = 0 we find [a][a] = − < −1 > [−1][a] = [−1][a].

Finally expanding

0 = [ab].[−ab] = ([a]+ < a > .[b])([−a]+ < −a > [b])

gives
0 =< a > ([b][−a]+ < −1 > [a][b])+ < −1 > [−1][b]

as [−a] = [a]+ < a > [−1] we get

0 =< a > ([b][a]+ < −1 > [a][b]) + [b][−1]+ < −1 > [−1][b]

the last term is 0 by (3) so that we get the third claim.
The fourth one is obtained by expanding [a2] = 2[a] + η[a][a]; now due to

point (2) we have [a2] = 2[a] + η[−1][a] = (2 + η[−1])[a] = h[a]. Applying η
we thus get 0. ��

Let us denote (in any characteristic) by GW (F ) the Grothendieck–Witt
ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]:
this is the group completion of the commutative monoid of isomorphism
classes of non-degenerate symmetric bilinear forms for the direct sum.

For u ∈ F×, we denote by < u >∈ GW (F ) the form on the vector space of
rank one F given by F 2 → F , (x, y) �→ uxy. By the results of loc. cit., these
< u > generate GW (F ) as a group. The following Lemma is (essentially) [48,
Lemma (1.1) Chap. IV]:

Lemma 3.9. [48] The group GW (F ) is generated by the elements < u >,
u ∈ F×, and the following relations give a presentation of GW (F ):

(i) < u(v2) >=< u >;
(ii) < u > + < −u >= 1+ < −1 >;
(iii) < u > + < v >=< u+ v > + < (u+ v)uv > if (u+ v) �= 0.
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When char(F ) �= 2 the first two relations imply the third one and one
obtains the standard presentation of the Grothendieck–Witt ring GW (F ),
see [69]. If char(F ) = 2 the third relation becomes 2(< u > −1) = 0.

We observe that the subgroup (h) of GW (F ) generated by the hyperbolic
plan h = 1+ < −1 > is actually an ideal (use the relation (ii)). We let
W (F ) be the quotient (both as a group or as a ring) GW (F )/(h) and let
W (F ) → Z/2 be the corresponding mod 2 rank homomorphism; W (F ) is the
Witt ring of F [48], and [69] in characteristic �= 2. Observe that the following
commutative square of commutative rings

GW (F ) → Z

↓ ↓
W (F ) → Z/2

(3.1)

is cartesian. The kernel of the mod 2 rank homomorphism W (F ) → Z/2 is
denoted by I(F ) and is called the fundamental ideal of W (F ).

It follows from our previous results that u �→< u >∈ KMW
0 (F ) satisfies all

the relations defining the Grothendieck–Witt ring. Only the last one requires
a comment. As the symbol < u > is multiplicative in u, we may reduce to
the case u + v = 1 by dividing by < u + v > if necessary. In that case, this
follows from the Steinberg relation to which one applies η2. We thus get a
ring epimorphism (surjectivity follows from Lemma 3.6)

φ0 : GW (F ) � KMW
0 (F )

For n > 0 the multiplication by ηn : KMW
0 (F ) → KMW

−n (F ) kills h (because
h.η = 0 and thus we get an epimorphism:

φ−n : W (F ) � KMW
−n (F )

Lemma 3.10. For each field F , each n ≥ 0 the homomorphism φ−n is an
isomorphism.

Proof. Following [7], let us define by Jn(F ) the fiber product In(F )×in(F )

KM
n (F ), where we use the Milnor epimorphism sn : KM

n (F )/2 � in(F ), with
in(F ) := In(F )/I(n+1)(F ). For n ≤ 0, In(F ) is understood to be W (F ). Now
altogether the J∗(F ) form a graded ring and we denote by η ∈ J−1(F ) =
W (F ) the element 1 ∈ W (F ). For any u ∈ F×, denote by [u] ∈ J1(F ) ⊂
I(F )×F× the pair (< u > −1, u). Then the four relations hold in J∗(F ) which
produces an epimorphism KMW∗ (F ) � J∗(F ). For n > 0 the composition of
epimorphisms W (F ) → KMW−n (F ) → J−n(F ) = W (F ) is the identity. For
n = 0 the composition GW (F ) → KMW

0 (F ) → J0(F ) = GW (F ) is also the
identity. The Lemma is proven. ��
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Corollary 3.11. The canonical morphism of graded rings

KMW
∗ (F ) → W (F )[η, η−1]

induced by [u] �→ η−1(< u > −1) induces an isomorphism

KMW
∗ (F )[η−1] = W (F )[η, η−1]

Remark 3.12. For any F let I∗(F ) denote the graded ring consisting of the
powers of the fundamental ideal I(F ) ⊂ W (F ). We let η ∈ I−1(F ) = W (F )
be the generator. Then the product with η acts as the inclusions In(F ) ⊂
In−1(F ). We let [u] =< u > −1 ∈ I(F ) be the opposite to the Pfister
form << u >>= 1− < u >. Then these symbol satisfy the relations of
Milnor–Witt K-theory [54] and the image of h is zero. We obtain in this way
an epimorphism KW

∗ (F ) � I∗(F ), [u] �→< u > −1 = − << u >>. This
ring I∗(F ) is exactly the image of the morphism KMW

∗ (F ) → W (F )[η, η−1]
considered in the Corollary above.

We have proven that this is always an isomorphism in degree ≤ 0. In fact
this remains true in degree 1, see Corollary 3.47 for a stronger version. In
fact it was proven in [54] (using [1] and Voevodsky’s proof of the Milnor
conjectures) that

KW
∗ (F ) � I∗(F ) (3.2)

is an isomorphism in characteristic �= 2. Using Kato’s proof of the analogues
of those conjectures in characteristic 2 [37] we may extend this result for any
field F .

From that we may also deduce (as in [54]) that the obvious epimorphism

KW
∗ (F ) � J∗(F ) (3.3)

is always an isomorphism. ��
Here is a very particular case of the last statement, but completely

elementary:

Proposition 3.13. Let F be a field for which any unit is a square. Then the
epimorphism

KMW
∗ (F ) → KM

∗ (F )

is an isomorphism in degrees ≥ 0, and the epimorphism

KMW
∗ (F ) → KW

∗ (F )

is an isomorphism in degrees < 0. In fact In(F ) = 0 for n > 0 and In(F ) =
W (F ) = Z/2 for n ≤ 0. In particular the epimorphisms (3.2) and (3.3) are
isomorphisms.
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Proof. The first observation is that < −1 >= 1 and thus 2η = 0 (fourth
relation in Milnor–Witt K-theory). Now using Lemma 3.14 below we see that
for any unit a ∈ F×, η[a2] = 2η[a] = 0, thus as any unit b is a square, we get
that for any b ∈ F×, η[b] = 0. This proves that the second relation of Milnor–
Witt K-theory gives for units (a, b) in F : [ab] = [a] + [b] + η[a][b] = [a] + [b].
The proposition now follows easily from these observations. ��
Lemma 3.14. Let a ∈ F× and let n ∈ Z be an integer. Then the following
formula holds in KMW

1 (F ):
[an] = nε[a]

where for n ≥ 0, where nε ∈ KMW
0 (F ) is defined as follows

nε =

n∑

i=1

< (−1)(i−1) >

(and satisfies for n > 0 the relation nε =< −1 > (n− 1)ε + 1) and where for
n ≤ 0, nε := − < −1 > (−n)ε. ��

Proof. The proof is quite straightforward by induction: one expands [an] =
[an−1] + [a] + η[an−1][a] as well as [a−1] = − < a > [a] = −([a] + η[a][a]). ��

3.2 Unramified Milnor–Witt K-Theories

In this section we will define for each n ∈ Z an explicit sheaf KMW
n on Smk

called unramified Milnor–Witt K-theory in weight n, whose sections on any
field F ∈ Fk is the group KMW

n (F ). In the next section we will prove that
for n > 0 this sheaf KMW

n is the free strongly A
1-invariant sheaf generated

by (Gm)∧n.

Residue homomorphisms. Recall from [47], that for any discrete valua-
tion v on a field F , with valuation ring Ov ⊂ F , and residue field κ(v), one
can define a unique homomorphism (of graded groups)

∂v : KM
∗ (F ) → KM

∗−1(κ(v))

called “residue” homomorphism, such that

∂v({π}{u2} . . . {un}) = {u2} . . . {un}

for any uniformizing element π and units ui ∈ O×
v , and where u denotes the

image of u ∈ Ov ∩ F× in κ(v).
In the same way, given a uniformizing element π, one has:
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Theorem 3.15. There exists one and only one morphism of graded groups

∂π
v : KMW

∗ (F ) → KMW
∗−1 (κ(v))

which commutes to product by η and satisfying the formulas:

∂π
v ([π][u2] . . . [un]) = [u2] . . . [un]

and
∂π
v ([u1][u2] . . . [un]) = 0

for any units u1, . . . , un of Ov.

Proof. Uniqueness follows from the following Lemma as well as the
formulas [a][a] = [a][−1], [ab] = [a] + [b] + η[a][b] and [a−1] = − < a >
[a] = −([a] + η[a][a]). The existence follows from Lemma 3.16 below. ��

To define the residue morphism ∂π
v we use the method of Serre [47]. Let

ξ be a variable of degree 1 which we adjoin to KMW∗ (κ(v)) with the relation
ξ2 = ξ[−1]; we denote by KMW∗ (κ(v))[ξ] the graded ring so obtained.

Lemma 3.16. Let v be a discrete valuation on a field F , with valuation ring
Ov ⊂ F and let π be a uniformizing element of v. The map

Z×O×
v = F× → KMW

∗ (κ(v))[ξ]

(πn.u) �→ Θπ(π
n.u) := [u] + (nε < u >).ξ

and η �→ η satisfies the relations of Milnor–Witt K-theory and induce a
morphism of graded rings:

Θπ : KMW
∗ (F ) → KMW

∗ (κ(v))[ξ]

Proof. We first prove the first relation of Milnor–Witt K-theory. Let
πn.u ∈ F× with u in O×

v . We want to prove Θπ(π
n.u)Θπ(1 − πn.u) = 0

in KMW
∗ (κ(v))[ξ]. If n > 0, then 1 − πn.u is in O×

v and by definition
Θπ(1 − πn.u) = 0. If n = 0, then write 1 − u = πm.v with v a unit in
Ov. If m > 0 the symmetric reasoning allows to conclude. If m = 0, then
Θπ(u) = [u] and Θπ(1− u) = [1− u] in which case the result is also clear.

It remains to consider the case n < 0. Then Θπ(π
n.u) = [u]+(nε < u >)ξ.

Moreover we write (1 − πn.u) as πn(−u)(1 − π−nu−1) and we observe that
(−u)(1−π−nu−1) is a unit on Ov so that Θπ(1−πn.u) = [−u]+nε < −u > ξ.
Expanding Θπ(π

n.u)Θπ(1 − πn.u) we find [u][−u] + nε < u > ξ[−u] + nε <
−u > [u][ξ] + (nε)

2 < −1 > ξ2. We observe that [u][−u] = 0 and that
(nε)

2 < −1 > ξ2 = (nε)
2[−1] < −1 > ξ = nε < −1 > ξ[−1] because

(nε)
2[−1] = nε[−1] (this follows from Lemma 3.14 : (nε)

2[−1] = nε[(−1)n] =

[(−1)n
2

] = [(−1)n] as n2−n is even). Thus Θπ(π
n.u)Θπ(1−πn.u) = nε{??}ξ
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where the expression {??} is

< −u > ([u]− [−u])+ < −1 > [−1]

But [u] − [−u] = [u] − [u] − [−1] − η[u][−1] = − < u > [−1] thus < −u >
([u]− [−u]) = − < −1 > [−1], proving the result.

We now check relation 2 of Milnor–Witt K-theory. Expanding we find that
the coefficient which doesn’t involve ξ is 0 and the coefficient of ξ is

nε < u > +mε < v > −nε < −u > (< v > −1) +mε < v > (< u > −1)

+nεmε < uv > (< −1 > −1)

A careful computation (using < u > + < −u >=< 1 > + < −1 >=< uv >
+ < −uv > yields that this term is

nε +mε − nεmε+ < −1 > nεmε

which is shown to be (n + m)ε. The last two relations of the Milnor–Witt
K-theory are very easy to check. ��

We now proceed as in [47], we set for any α ∈ KMW
n (F ):

Θπ(α) := sπv (α) + ∂π
v (α).ξ

The homomorphism ∂π
v so defined is easily checked to have the required

properties. Moreover sπv : KMW∗ (F ) → KMW∗ (κ(v)) is a morphism of rings,
and as such is the unique one mapping η to η and πnu to [u].

Proposition 3.17. We keep the previous notations and assumptions. For
any α ∈ KMW

∗ (F ):

1) ∂π
v ([−π].α) =< −1 > sπv (α);

2) ∂π
v ([u].α) = − < −1 > [u]∂π

v (α) for any u ∈ O×
v .

3) ∂π
v (< u > .α) =< u > ∂π

v (α) for any u ∈ O×
v .

Proof. We observe that, for n ≥ 1, KMW
n (F ) is generated as group by

elements of the form ηm[π][u2] . . . [un+m] or of the form ηm[u1][u2] . . . [un+m],
with the ui’s units of Ov and with n+m ≥ 1. Thus it suffices to check the
formula on these elements, which is straightforward. ��
Remark 3.18. A heuristic but useful explanation of this “trick” of Serre is the
following. Spec(F ) is the open complement in Spec(Ov) of the closed point
Spec(κ(v)). If one had a tubular neighborhood for that closed immersion,
there should be a morphism E(νv) − {0} → Spec(F ) of the complement
of the zero section of the normal bundle to Spec(F ) ; the map θπ is the
map induced in cohomology by this “hypothetical” morphism. Observe that
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choosing π corresponds to trivializing νv, in which case E(νv)−{0} becomes
(Gm)Spec(κ(v)). Then the ring KMW

∗ (κ(v))[ξ] is just the ring of sections of
KMW

∗ on (Gm)Spec(κ(v)). The “funny” relation ξ2 = ξ[−1] which is true for
any element in KMW

∗ (F ), can also be explained by the fact that the reduced
diagonal (Gm)Spec(κ(v)) → (Gm)∧2

Spec(κ(v)) is equal to the multiplication

by [−1]. ��
Lemma 3.19. For any field extension E ⊂ F and for any discrete valuation
on F which restricts to a discrete valuation w on E with ramification index e.
Let π be a uniformizing element of v and ρ a uniformizing element of w. Write
it ρ = uπe with u ∈ O×

v . Then for each α ∈ KMW∗ (E) one has

∂π
v (α|F ) = eε < u > (∂ρ

w(α))|κ(v)

Proof. We just observe that the square (of rings)

KMW∗ (F )
Θπ→ KMW∗ (κ(v))[ξ]

↑ ↑ Ψ

KMW
∗ (E)

Θρ→ KMW
∗ (κ(w))[ξ]

where Ψ is the ring homomorphism defined by [a] �→ [a|F ] for a ∈ κ(v)
and ξ �→ [u] + eε < u > ξ is commutative. It is sufficient to check the
commutativity in degree 1, which is not hard. ��

Using the residue homomorphism and the previous Lemma one may define
for any discrete valuation v on F the subgroup KMW

n (Ov) ⊂ KMW
n (F )

as the kernel of ∂π
v . From our previous Lemma (applied to E = F ,

e = 1), it is clear that the kernel doesn’t depend on π, only on v. We
define H1

v (Ov;K
MW
n ) as the quotient group KMW

n (F )/KMW
n (Ov). Once we

choose a uniformizing element π we get of course a canonical isomorphism
KMW

n (κ(v)) = H1
v (Ov;K

MW
n ).

Remark 3.20. One important feature of residue homomorphisms is that in
the case of Milnor K-theory, these residues homomorphisms don’t depend
on the choice of π, only on the valuation, but in the case of Milnor–Witt
K-theory, they do depend on the choice of π: for u ∈ O×, as one has
∂π
v ([u.π]) = ∂π

v ([π]) + η.[u] = 1 + η.[u].
This property of independence of the residue morphisms on the choice of π

is a general fact (in fact equivalent) for the Z-graded unramified sheaves M∗
considered above for which the Z[F×/F×2]-structure is trivial, like Milnor
K-theory. ��
Remark 3.21. To make the residue homomorphisms “canonical” (see [7,8,70]
for instance), one defines for a field κ and a one dimensional κ-vector space L,
twisted Milnor–Witt K-theory groups: KMW∗ (κ;L) = KMW∗ (κ)⊗Z[κ×] Z[L−
{0}], where the group ring Z[κ×] acts through u �→< u > on KMW

∗ (κ) and
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through multiplication on Z[L− {0}]. The canonical residue homomorphism
is of the following form

∂v : KMW
∗ (F ) → KMW

∗−1 (κ(v);mv/(mv)
2)

with ∂v([π].[u2] . . . [un]) = [u2] . . . [un]⊗ π, where mv/(mv)
2 is the cotangent

space at v (a one dimensional κ(v)-vector space). We will make this precise
in Sect. 4.1 below. ��

The following result and its proof follow closely Bass–Tate [9]:

Theorem 3.22. Let v be a discrete valuation ring on a field F . Then the
subring

KMW
∗ (Ov) ⊂ KMW

∗ (F )

is as a ring generated by the elements η and [u] ∈ KMW
1 (F ), with u ∈ O×

v a
unit of Ov.

Consequently, the group KMW
n (Ov) is generated by symbols [u1] . . . [un]

with the ui’s in O×
v for n ≥ 1 and by the symbols η−n < u > with the u’s in

O×
v for n ≤ 0

Proof. The last statement follows from the first one as in Lemma 3.6.
We consider the quotient graded abelian groupQ∗ ofKMW∗ (F ) by the sub-

ring A∗ generated by the elements and η ∈ KMW−1 (F ) and [u] ∈ KMW
1 (F ),

with u ∈ O×
v a unit of Ov. We choose a uniformizing element π. The valuation

morphism induces an epimorphism Q∗ → KMW∗−1 (κ(v)). It suffices to check
that this is an isomorphism. We will produce an epimorphism KMW∗−1 (κ(v)) →
Q∗ and show that the composition KMW∗−1 (κ(v)) → Q∗→KMW∗−1 (κ(v)) is the
identity.

We construct a KMW∗ (κ(v))-module structure on Q∗(F ). Denote by E∗ the
graded ring of endomorphisms of the graded abelian group Q∗(F ). First the
element η still acts on Q∗ and yields an element η ∈ E−1. Let a ∈ κ(v)× be
a unit in κ(v). Choose a lifting α̃ ∈ O×

v . Then multiplication by α̃ induces a
morphism of degree +1, Q∗ → Q∗+1. We first claim that it doesn’t depend on
the choice of α̃. Let α̃′ = βα̃ be another lifting so that u ∈ O×

v is congruent
to 1 mod π. Expanding [α̃′] = [α̃] + [β] + η[α̃][β] we see that it is sufficient to
check that for any a ∈ F×, the product [β][a] lies in the subring A∗. Write
a = πn.u with u ∈ O×

v . Then expanding [πn.u] we end up to checking the
property for the product [β][πn], and using Lemma 3.14 we may even assume
n = 1. Write β = 1− πn.v, with n > 0 and v ∈ O×

v .
Thus we have to prove that the products of the above form [1−πn.v][π] are

in A∗. For n = 1, the Steinberg relation yields [1− π.v][π.v] = 0. Expanding
[π.v] = [π](1 + η[v]) + [v], implies [1 − π.v][π](1 + η[v]) is in A∗. But by
Lemma 3.7, 1 + η[v] =< v > is a unit of A∗, with inverse itself. Thus [1 −
π.v][π] ∈ A∗. Now if n ≥ 2, 1 − πn.v = (1 − π) + π(1 − πn−1v) = (1 −
π)(1 + π(1−πn−1

1−π )) = (1 − π)(1 − πw), with w ∈ O×
v . Expending, we get
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[1 − πn.v][π] = [1 − π][π] + [1 − πw][π] + η[1 − π][1 − πw][π] = [1 − πw][π].
Thus the result holds in general.

We thus define this way elements [u] ∈ E1. We now claim these elements
(together with η) satisfy the four relations in Milnor–Witt K-theory: this
is very easy to check, by the very definitions. Thus we get this way a
KMW

∗ (κ(v))-module structure on Q∗. Pick up the element [π] ∈ Q1 =
KMW

1 (F )/A1. Its image through ∂π
v is the generator of KMW

∗ (κ(v)) and
the homomorphism KMW

∗−1 (κ(v)) → Q∗, α �→ α.[π] provides a section of
∂π
v : Q∗ → KMW

∗−1 (κ(v)). This is clear from our definitions.
It suffices now to check that KMW

∗−1 (κ(v)) → Q∗ is onto. Using the fact
that any element of F can be written πnu for some unit u ∈ O×

v , we see that
KMW

∗ (F ) is generated as a group by elements of the form ηm[π][u2] . . . [un] or
ηm[u1] . . . [un], with the ui’s in O×

v . But the latter are in A∗ and the former
are, modulo A∗, in the image of KMW

∗−1 (κ(v)) → Q∗. ��
Remark 3.23. In fact one may also prove as in loc. cit. the fact that the
morphism Θπ defined in the Lemma 3.16 is onto and its kernel is the ideal
generated by η and the elements [u] ∈ KMW

1 (F ) with u ∈ O×
v a unit of Ov

congruent to 1 modulo π. We will not give the details here, we do not use
these results. ��
Theorem 3.24. For any field F the following diagram is a (split) short exact
sequence of KMW∗ (F )-modules:

0 → KMW
n (F ) → KMW

n (F (T ))
Σ∂P

(P )−→ ⊕PK
MW
n−1 (F [T ]/P ) → 0

(where P runs over the set of monic irreducible polynomials of F [T ]).

Proof. It it is again very much inspired from [47]. We first observe that
the morphism KMW

∗ (F ) → KMW
∗ (F (T )) is a split monomorphism; from

our previous computations we see that KMW
∗ (F (T ))

∂T
(T )([T ]∪−)−→ KMW

∗ (F )
provides a retraction.

Now we define a filtration on KMW
∗ (F (T )) by sub-rings Ld’s

L0 = KMW
∗ (F ) ⊂ L1 ⊂ · · · ⊂ Ld ⊂ · · · ⊂ KMW

∗ (F (T ))

such that Ld is exactly the sub-ring generated by η ∈ KMW
−1 (F (T )) and

all the elements [P ] ∈ KMW
1 (F (T )) with P ∈ F [T ] − {0} of degree less

or equal to d. Thus L0 is indeed KMW
∗ (F ) ⊂ KMW

∗ (F (T )). Observe that⋃
d Ld = KMW

∗ (F (T )). Observe that each Ld is actually a sub KMW
∗ (F )-

algebra.
Also observe that using the relation [a.b] = [a]+[b]+η[a][b] that if [a] ∈ Ld

and [b] ∈ Ld then so are [ab] and [ab ]. As a consequence, we see that for
n ≥ 1, Ld(K

MW
n (F (T ))) is the sub-group generated by symbols [a1] . . . [an]

such that each ai itself is a fraction which involves only polynomials of degree
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≤ d. In degree ≤ 0, we see in the same way that Ld(K
MW
n (F (T ))) is the sub-

group generated by symbols < a > ηn with a a fraction which involves only
polynomials of degree ≤ d.

It is also clear that for n ≥ 1, Ld(K
MW
n (F (T ))) is generated as a group

by elements of the form ηm[a1] . . . [an+m] with the ai of degree ≤ d. ��
Lemma 3.25. 1) For n ≥ 1, Ld(K

MW
n (F (T ))) is generated by the elements

of L(d−1)(K
MW
n (F (T ))) and elements of the form ηm[a1] . . . [an+m] with

a1 of degree d and the ai’s, i ≥ 2 of degree ≤ (d− 1).
2) Let P ∈ F [T ] be a monic polynomial of degree d > 0. Let G1, . . . , Gi be

polynomials of degrees ≤ (d−1). Finally let G be the rest of the Euclidean
division of Πj∈{1,...,i}Gj by P , so that G has degree ≤ (d − 1). Then one
has in the quotient group KMW

2 (F (T ))/Ld−1 the equality

[P ][G1 . . . Gi] = [P ][G]

Proof. 1) We proceed as in Milnor’s paper. Let f1 and f2 be polynomials
of degree d. We may write f2 = −af1 + g, with a ∈ F× a unit and g of
degree ≤ (d− 1). If g = 0, the we have [f1][f2] = [f1][a(−f1)] = [f1][a] (using
the relation [f1,−f1] = 0). If g �= 0 then as in loc. cit. we get 1 = af1

g + f2
g

and the Steinberg relation yields [af1g ][ f2g ] = 0. Expanding with η we get:

([f1]− [ ga ]− η[ ga ][
af1
g ])[ f2g ] = 0, which readily implies (still in KMW

2 (F (T ))):

([f1]− [
g

a
])[

f2
g
] = 0

But expanding the right factor now yields

([f1]− [
g

a
])([f2]− [g]− η[g][

f2
g
]) = 0

which implies (using again the previous vanishing):

([f1]− [
g

a
])([f2]− [g]) = 0

We see that [f1][f2] can be expressed as a sum of symbols in which at most
one of the factor as degree d, the other being of smaller degree. An easy
induction proves (1).

2) We first establish the case i = 2. We start with the Euclidean
division G1G2 = PQ + G. We get from this the equality 1= G

G1.G2
+ PQ

G1.G2

which gives [ PQ
G1.G2

][ G
G1.G2

] = 0. We expand the left term as [ PQ
G1.G2

] =

< Q
G1.G2

> [P ] + [ Q
G1.G2

]. We thus obtain [P ][ G
G1.G2

] =− < Q
G1.G2

>

[ Q
G1.G2

][ G
G1.G2

] but the right hand side is in L(d−1) (observe Q has degree
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≤ (d − 1)) thus [P ][ G
G1.G2

] ∈ L(d−1) ⊂ KMW
2 (F (T )). Now [ G

G1G2
] =

[G] − [G1G2] − η[G1G2][
G

G1G2
]. Thus [P ][ G

G1.G2
] = [P ][G] − [P ][G1G2]+ <

−1 > η[G1G2][P ][ G
G1G2

]. This shows that modulo L(d−1), [P ][G]− [P ][G1G2]
is zero, as required.

For the case i ≥ 3 we proceed by induction. Let Πj∈{2,...,i}Gj = P.Q+G′

be the Euclidean division of Πj∈{2,...,i}Gj by P with G′ of degree ≤ (d− 1).
Then the rest G of the Euclidean division by P of G1 . . . Gi is the same as the
rest of the Euclidean division of G1G

′ by P . Now [P ][G1 . . . Gi] = [P ][G1] +
[P ][G2 . . . Gi]+η[P ][G2 . . . Gi][G1]. By the inductive assumption this is equal,
in KMW

2 (F (T ))/Ld−1, to [P ][G1] + [P ][G′] + η[P ][G′][G1] = [P ][G′G1]. By
the case 2 previously proven we thus get in KMW

2 (F (T ))/Ld−1,

[P ][G1 . . .Gi] = [P ][G1G
′] = [P ][G]

which proves our claim. ��
Now we continue the proof of Theorem 3.24 following Milnor’s proof of [47,

Theorem 2.3]. Let d ≥ 1 be an integer and let P ∈ F [T ] be a monic irreducible
polynomial of degree d. We denote by KP ⊂ Ld/L(d−1) the sub-graded group
generated by elements of the form ηm[P ][G1] . . . [Gn] with the Gi of degree
(d− 1). For any polynomial G of degree ≤ (d− 1), the multiplication by ε[G]
induces a morphism:

ε[G]. : KP → KP

ηm[P ][G1] . . . [Gn] �→ ε[G]ηm[P ][G1] . . . [Gn] = ηm[P ][G][G1] . . . [Gn]

of degree +1. Let EP be the graded associative ring of graded endomorphisms
of KP . We claim that the map (F [T ]/P )× → (EP )1, (G) �→ ε[G]. (where G
has degree ≤ (d − 1)) and the element η ∈ (EP )−1 (corresponding to the
multiplication by η) satisfy the four relations of the Milnor–Witt K-theory.
Let us check the Steinberg relation. Let G ∈ F [T ] be of degree ≤ (d − 1).
Then so is 1−G and the relation (ε[G].)◦ (ε[1−G].) = 0 ∈ EP is clear. Let us
check relation 2. We let H1 and H2 be polynomials of degree ≤ (d− 1). Let
G be the rest of division of H1H2 by P . By definition ε[(H1)(H2)]. is ε[(G)]..
But by the part (2) of the Lemma we have (in KP ⊂ KMW

m (F (T ))/L(d−1)):

ε[(G)].(ηm[P ][G1] . . . [Gn]) = ηm[P ][G][G1] . . . [Gn]

= ηm[P ][H1H2][G1] . . . [Gn]

which easily implies the claim. The last two relations are easy to check.
We thus obtain a morphism of graded ring KMW

∗ (F [T ]/P ) → EP . By
letting KMW

∗ (F [T ]/P ) act on [P ] ∈ Ld/L(d−1) ⊂ KMW
1 (F (T ))/L(d−1) we

obtain a graded homomorphism

KMW
∗ (F [T ]/P ) → KP ⊂ Ld/L(d−1)
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which is an epimorphism. By the first part of the Lemma, we see that the
induced homomorphism

⊕P KMW
∗ (F [T ]/P ) → Ld/L(d−1) (3.4)

is an epimorphism. Now using our definitions, one checks as in [47] that for P
of degree d, the residue morphism ∂P vanishes on L(d−1) and that moreover
the composition

⊕PK
MW
∗ (F [T ]/P ) � Ld(K

MW
n (F (T )))/L(d−1)(K

MW
n (F (T )))

∑
P ∂P

−→ ⊕PK
MW
∗ (F [T ]/P )

is the identity. As in loc. cit. this implies the theorem, with the observation
that the quotients Ld/Ld−1 are K

MW
∗ (F )-modules and the residues maps are

morphisms of KMW
∗ (F )-modules. ��

Remark 3.26. We observe that the previous theorem in negative degrees is
exactly [53, Theorem 5.3].

Now we come back to our fixed base field k and work in the category Fk.
We will make constant use of the results of Sect. 2.3. We endow the functor
F �→ KMW∗ (F ), Fk → Ab∗ with Data (D4) (i), (D4) (ii) and (D4) (iii).
The datum (D4) (i) comes from the KMW

0 (F ) = GW (F )-module structure
on each KMW

n (F ) and the datum (D4) (ii) comes from the product F× ×
KMW

n (F ) → KMW
(n+1)(F ). The residue homomorphisms ∂π

v gives the Data

(D4) (iii). We observe of course that these Data are extended from the
prime field of k.

Axioms (B0), (B1) and (B2) are clear from our previous results. The
Axiom (B3) follows at once from Lemma 3.19.

Axiom (HA) (ii) is clear, Theorem 3.24 establishes Axiom (HA) (i).
For any discrete valuation v on F ∈ Fk, and any uniformizing element

π, define morphisms of the form ∂y
z : KMW

n (κ(y)) → KMW
n−1 (κ(z)) for any

y ∈ (A1
F )

(1) and z ∈ (A1
κ(v))

(1) fitting in the following diagram:

0 → KMW∗ (F ) → KMW∗ (F (T )) → ⊕y∈(A1
F )(1)K

MW∗−1 (κ(y)) → 0

↓ ∂π
v ↓ ∂π

v[T ] ↓ Σy,z∂
π,y
z

0 → KMW
∗−1 (κ(v)) → KMW

n−1 (κ(v)(T )) → ⊕z∈A1
κ(v)

KMW
∗−2 (κ(v)) → 0

(3.5)

The following Theorem establishes Axiom (B4).

Theorem 3.27. Let v be a discrete valuation on F ∈ Fk, let π be a
uniformizing element. Let P ∈ Ov[T ] be an irreducible primitive polynomial,
and Q ∈ κ(v)[T ] be an irreducible monic polynomial.
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(i) If the closed point Q ∈ A
1
κ(v) ⊂ A

1
Ov

is not in the divisor DP then the

morphism ∂π,P
Q is zero.

(ii) If Q is in DP ⊂ A
1
Ov

and if the local ring ODP ,Q is a discrete valuation
ring with π as uniformizing element then

∂π,P
Q = − < −P ′

Q′ > ∂Q
Q

Proof. Let d ∈ N be an integer. We will say that Axiom (B4) holds in
degree ≤ d if for any field F ∈ Fk, any irreducible primitive polynomial
P ∈ Ov[T ] of degree ≤ d, any monic irreducible Q ∈ κ(v)[T ] then: if Q
doesn’t lie in the divisor DP , the homomorphism ∂P

Q is 0 on KMW
∗ (F [T ]/P )

and if Q lies in DP and that the local ring Oy,z is a discrete valuation ring
with π as uniformizing element , then the homomorphism ∂P

Q is equal to −∂π
Q.

We now proceed by induction on d to prove that Axiom (B4) holds in
degree ≤ d for any d. For d = 0 this is trivial, the case d = 1 is also easy.

We may use Remark 2.17 to reduce to the case the residue field κ(v) is
infinite. ��

We will use:

Lemma 3.28. Let P be a primitive irreducible polynomial of degree d in
F [T ]. Let Q be a monic irreducible polynomial in κ(v)[T ].

Assume either that P is prime to Q, or that Q divides P and that the local
ring ODP ,Q is a discrete valuation ring with uniformizing element π.

Then the elements of the form ηm[G1] . . . [Gn], where all the Gi’s are
irreducible elements in Ov[T ] of degree < d, such that, either G1 is equal
to π or G1 is prime to Q, and for any i ≥ 2, Gi is prime to Q, generate
KMW∗ (F [T ]/P ) as a group.

Proof. First the symbols of the form ηm[G1] . . . [Gn] with the Gi irre-
ducible elements of degree < d of Ov[T ] generate the Milnor–Witt K-theory
of f [T ]/P as a group.

1) We first assume that P is prime to Q. It suffices to check that those
element above are expressible in terms of symbols of the form of the Lemma.
Pick up one such ηm[G1] . . . [Gn]. Assume that there exists i such that Gi is
divisible by Q (otherwise there is nothing to prove), for instance G1.

If the field κ(v) is infinite, which we may assume by Remark 2.17, we may
find an α ∈ Ov such that G1(α) is a unit in O×

v . Then there exists a unit
u in O×

v and an integer v (actually the valuation of P (α) at π) such that
P + uπvG is divisible by T − α in Ov[T ]. Write P + uπvG1 = (T − α)H1.
Observe that Q which divides G1 and is prime to P must be prime to both
T − α and H1.

Observe that (T−α)
uπv H1 = P

uπv + G1 is the Euclidean division of (T−α)
uπv H1

by P . By Lemma 3.25 one has in KMW∗ (F (T )), modulo Ld−1
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ηm[P ][G1][G2] . . . [Gn] = ηm[P ][
(T − α)

uπv
H1][G2] . . . [Gn]

Because ∂P
DP

vanishes on Ld−1, applying ∂P
DP

to the previous congruence

yields the equality in KMW
∗ (F [T ]/P )

ηm[G1] . . . [Gn] = ηm[
(T − α)

uπv
H1][G2] . . . [Gn]

Expanding [ (T−α)
uπv H1] as [ (T−α)

uπv ] + [H1] + η[ (T−α)
uπv ][H1] shows that we may

strictly reduce the number of Gi’s whose mod π reduction is divisible by Q.
This proves our first claim (using the relation [π][π] = [π][−1] we may indeed
assume that only G1 is maybe equal to π).

2) Now assume that Q divides P and that the local ringODP ,Q is a discrete
valuation ring with uniformizing element π. By our assumption, any non-zero
element in the discrete valuation ring ODP ,Q = (Ov[T ]/P )Q can be written
as

πvR

S

with R and S polynomials in Ov[T ] of degree < d whose mod π reduction in
κ(v)[T ] is prime to Q. From this, it follows easily that the symbols of the form
ηm[G1] . . . [Gn], with the Gi’s being either a polynomial in Ov[T ] of degree
< d whose mod π reduction in κ(v)[T ] is prime to Q, either equal to π.

The Lemma is proven. ��
Now let d > 0 and assume the claim is proven in degrees < d, for all fields.

Let P be a primitive irreducible polynomial of degree d in Ov[T ]. Let Q be
a monic irreducible polynomial in κ(v)[T ].

Under our inductive assumption, we may compute ∂π,P
Q (ηm[G1] . . . [Gn])

for any sequence G1, .., Gn as in the Lemma.
Indeed, the symbol ηm[P ][G1] . . . [Gn] ∈ KMW

n−m has residue at P the

symbol ηm[G1] . . . [Gn]. All its other potentially non trivial residues concern
irreducible polynomials of degree < d. By the (proof of) Theorem 3.24, we
know that there exists an α ∈ Ld−1(K

MW
n−m(F (T )) such that

ηm[P ][G1] . . . [Gn] + α

has only one non vanishing residue, which is at P , and which equals
ηm[G1] . . . [Gn].

Then the support of α (which means the set of points of codimension one
in A

1
F where α has a non trivial residue) consists of the divisors defined by

the Gi’s (P doesn’t appear). But those don’t contain Q.
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Using the commutative diagram which defines the ∂P
Q ’s, we may compute

∂π,P
Q (ηm[G1] . . . [Gn]) as

∂Q
Q(∂π

v (η
m[P ][G1] . . . [Gn] + α)) = ∂Q

Q(∂π
v (η

m[P ][G1] . . . [Gn]) +
∑

i

∂π,Gi
Q (∂Gi

DGi
(α))

By our inductive assumption,
∑

i ∂
π,Gi

Q (∂Gi

DGi
(α)) = 0 because the supports

Gi do not contain Q.
We then have two cases:

(1) G1 is not π. Then
∂π
v (η

m[P ][G1] . . . [Gn]) = 0

as every element lies inO×
v[T ]. Thus in that case, ∂π,P

Q (ηm[G1] . . . [Gn]) = 0

which is compatible with our claim.
(2) G1 = π. Then

∂π
v (η

m[P ][π][G2] . . . [Gn]) = − < −1 > ∂π
v (η

m[π][P ][G2] . . . [Gn])

= − < −1 > ηm[P ][G2] . . . [Gn]

Applying ∂Q
Q yields 0 if P is prime to Q, as all the terms are units. If P = QR,

then R is a unit in (A1
κv)Q by our assumptions. Expending [QR] = [Q]+[R]+

η[Q][R], we get

∂π,P
Q (ηm[G1] . . . [Gn]) = − < −1 > ηm([G2] . . . [Gn] + η[R][G2] . . . [Gn])

= − < −R > ηm[G2] . . . [Gn]

It remains to observe that R = P ′
Q′ .

By the previous Lemma the symbols we used generate KMW
∗ (F [T ]/P ).

Thus the previous computations prove the Theorem. ��
Now we want to prove Axiom (B5). Let X be a local smooth k-scheme

of dimension 2, with field of functions F and closed point z, let y0 ∈ X(1)

be such that y0 is smooth over k. Choose a uniformizing element π of OX,y0 .
Denote by Kn(X ; y0) the kernel of the map

KMW
n (F )

Σ
y∈X(1)−{y0}∂y−→ ⊕y∈X(1)−{y0}H

1
y (X ;KMW

n ) (3.6)

By definition KMW
n (X) ⊂ Kn(X ; y0). The morphism ∂π

y0
: KMW

n (F ) →
KMW

n−1 (κ(y0)) induces an injective homomorphism Kn(X ; y0)/K
MW
n (X) ⊂

KMW
n−1 (κ(y0)).
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We first observe:

Lemma 3.29. Keep the previous notations and assumptions. Then
KMW

n−1 (Oy0) ⊂ Kn(X ; y0)/K
MW
n (X) ⊂ KMW

n−1 (κ(y0)).

Proof. We apply Gabber’s lemma to y0, and in this way, we see (by
diagram chase) that we can reduce to the case X = (A1

U )z where U is a
smooth local k-scheme of dimension 1. As Theorem 3.27 implies Axiom (B4),
we know by Lemma 2.43 that the following complex

0 → KMW
n (X) → KMW

n (F )
Σ

y∈X(1)∂y−→ ⊕y∈X(1)H1
y (X ;KMW

n )

→ H2
z (X ;KMW

n ) → 0

is an exact sequence. Moreover, we know also from there that for y0 smooth,
the morphism H1

y (X ;KMW
n ) → H2

z (X ;KMW
n ) can be “interpreted” as the

residue map. Its kernel is thus KMW
n−1 (Oy0) ⊂ KMW

n−1 (κ(y0))
∼= H1

y (X ;KMW
n ).

The exactness of the previous complex implies that

Kn(X ; y0)/K
MW
n (X) = KMW

n−1 (Oy0)

proving the statement. ��
Our last objective is now to show that in fact KMW

n−1 (Oy0) =

Kn(X ; y0)/K
MW
n (X) ⊂ KMW

n−1 (κ(y0)). To do this we observe that by Lemma
2.43, for k infinite, the morphism (3.6) above is an epimorphism. Thus the
previous statement is equivalent to the fact that the diagram

0 → KMW
n−1 (Oy0) → KMW

n (F )/KMW
n (X)

Σ
y∈X(1)−{y0}∂y

−→ ⊕y∈X(1)−{y0}

H1
y(X;KMW

n ) → 0

is a short exact sequence or in other words that the epimorphism

Φn(X ; y0) : K
MW
n (F )/KMW

n (X) +KMW
n−1 (Oy0)

Σ
y∈X(1)−{y0}∂y−→ ⊕y∈X(1)−{y0}

H1
y (X ;KMW

n ) (3.7)

is an isomorphism. We also observe that the group KMW
n (F )/KMW

n (X) +
KMW

n−1 (Oy0) doesn’t depend actually on the choice of a local parametrization
of y0.

Theorem 3.30. Let X be a local smooth k-scheme of dimension 2, with field
of functions F and closed point z, let y0 ∈ X(1) be such that y0 is smooth
over k. Then the epimorphism Φn(X ; y0)(3.7) is an isomorphism.
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Proof. We know from Axiom (B1) (that is to say Theorem 3.27) and
Lemma 2.43 that the assertion is true for X a localization of A1

U at some
codimension 2 point, where U is a smooth local k-scheme of dimension 1. ��
Lemma 3.31. Given any element α ∈ KMW

n (F ), write it as α =
∑

i αi,
where the αi’s are pure symbols. Let Y ⊂ X be the union of the hypersurfaces
defined by each factor of each pure symbol αi. Let X → A

1
U be an étale

morphism with U smooth local of dimension 1, with field of functions E,
such that Y → A

1
U is a closed immersion. Then for each i there exists a pure

symbol βi ∈ KMW
n (E(T )) which maps to αi modulo KMW

n (X) ⊂ KMW
n (F ).

As a consequence, if ∂y(α) �= 0 in H1
y (X ;KMW

n ) for some y ∈ X(1) then

y ∈ Y and ∂y(α) = ∂y(β) =∈ H1
y (X ;KMW

n ) = H1
y (A

1
U ;K

MW
n ).

Proof. Let us denote by πj the irreducible elements in the factorial ring
O(U)[T ] corresponding to the irreducible components of Y ⊂ A

1
U . Each αi =

[α1
i ] . . . [α

n
i ] is a pure symbol in which each term αs

i decomposes as a product
αs
i = us

iα
′s
i of a unit us

i in O(X)× and a product α′s
i of πj ’s (this follows

from our choices and the factoriality property of A := O(X). Thus α′
i is in

the image of KMW
n (E(T )) → KMW

n (F ). Now by construction, A/(Ππj) =
B/(Ππj), where B = O(U)[T ]. Thus one may choose unit vsi in B× with

ws
i :=

us
i

vs
i
≡ 1[Ππj ].

Now set βs
i = vsiα

′s
i , βi := [β1

i ] . . . [β
n
i ]. Then we claim that βi maps to αi

modulo KMW
n (X) ⊂ KMW

n (F ). In other words, we claim that [α1
i ] . . . [α

n
i ]−

[β1
i ] . . . [β

n
i ] lies in KMW

n (X) which means that each of its residue at any point
of codimension one in X vanishes. Clearly, by construction the only non-zero
residues can only occur at each πj .

We end up in showing the following: given elements βs ∈ A − {0},
s ∈ {1, . . . , n} and ws ∈ A× which is congruent to 1 modulo each
irreducible element π which divides one of the βs, then for each such π,
∂π([β1] . . . [βn]) = ∂π([w1β1] . . . [wnβn]). We expand [w1β1] . . . [wnβn] as
[w1][w2β2] . . . [wnβn]+[β1][w2β2] . . . [wnβn]+η[w1][β1][w2β2] . . . [wnβn]. Now

using Proposition 3.17 and the fact that wi
π

= 1, we immediately get
∂π([w1β1] . . . [wnβn]) = ∂π([β1][w2β2] . . . [wnβn]) which gives the result. An
easy induction gives the result. This proof can obviously be adapted for pure
symbols of the form ηn[α]. ��

Now the theorem follows from the Lemma. Let α ∈ KMW
n (F )/KMW

n (X)+
KMW

n−1 (Oy0) be in the kernel of Φn(X ; y0). Assume α ∈ KMW
n (F ) repre-

sents α. By Gabber’s Lemma there exists an étale morphism X → A
1
U

with U smooth local of dimension 1, with field of functions E, such that
Y ∪ y0 → A

1
U is a closed immersion, where Y is obtained by writing α as

a sum of pure symbols αi’s. By the previous Lemma, we may find βi in
KMW

n (E(T )) mapping to α modulo KMW
n (X) yo αi. Let β be the sum of

the βi’s. Then β ∈ KMW
n (E(T ))/KMW

n ((A1
U )z) +KMW

n−1 (Oy0) is also in the

kernel of our morphism Φn((A
1
U )z ; y0). Thus β = 0 and so α = 0. ��
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Unramified KR-theories. We now slightly generalize our construction
by allowing some “admissible” relations in KMW∗ (F ). An admissible set of
relationsR is the datum for each F ∈ Fk of a graded idealR∗(F ) ⊂ KMW∗ (F )
with the following properties:

1. For any extension E ⊂ F in Fk, R∗(E) is mapped into R∗(F ).
2. For any discrete valuation v on F ∈ Fk, any uniformizing element π,

∂π
v (R∗(F )) ⊂ R∗(κ(v)).

3. For any F ∈ Fk the following sequence is a short exact sequence:

0 → R∗(F ) → R∗(F (T ))

∑
P ∂P

DP−→ ⊕PR∗−1(F [t]/P ) → 0 ��

The third one is usually more difficult to check.
Given an admissible relation R, for each F ∈ Fk we simply denote by

KR
∗ (F ) the quotient graded ring KMW

∗ (F )/R∗(F ). The property (1) above
means that we get this way a functor

Fk → Ab∗

This functor is moreover endowed with data (D4) (i) and (D4) (ii) coming
from the KMW∗ -algebra structure. The property (2) defines the data (D4)
(iii). The axioms (B0), (B1), (B2), (B3) are immediate consequences from
those for KMW∗ . Property (3) implies axiom (HA) (i). Axiom (HA) (ii) is
clear. Axioms (B4) and (B5) are also consequences from the corresponding
axioms just established forKMW∗ . We thus get as in Theorem 2.46 a Z-graded
strongly A

1-invariant sheaf, denoted by KR
∗ with isomorphisms (KR

n )−1
∼=

KR
n−1. There is obviously a structure of Z-graded sheaf of algebras overKMW

∗ .

Lemma 3.32. Let R∗ ⊂ KMW
∗ (k) be a graded ideal. For any F ∈ Fk,

denote by R∗(F ) := R∗.KMW
∗ (F ) the ideal generated by R∗. Then R∗(F )

is an admissible relation on KMW
∗ . We denote the quotient simply by

KMW
∗ (F )/R∗.

Proof. Properties (1) and (2) are easy to check. We claim that the property
(3) also hold: this follows from Theorem 3.24 which states that the morphisms
and maps are KMW

∗ (F )-module morphisms. ��
Of course when R∗ = 0, we get the Z-graded sheaf of unramified Milnor–

Witt K-theory
KMW

∗

itself.

Example 3.33. For instance we may take an integer n and R∗ = (n) ⊂
KMW∗ (k); we obtain mod n Milnor–Witt unramified sheaves. For R∗ = (η)
the ideal generated by η, this yields unramified Milnor K-theory KM

∗ . For
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R∗ = (n, η) this yields mod n Milnor K-theory. For R = (h), this yields Witt
K-theory KW

∗ , for R = (η, �) this yields mod � Milnor K-theory. ��
Example 3.34. Let RI∗(F ) be the kernel of the epimorphism KMW∗ (F ) �
I∗(F ), [u] �→< u > −1 = − << u >> described in [54], see also
Remark 3.12. Then RI∗(F ) is admissible. Recall from the Remark 3.12 that
KMW∗ (F )[η−1] = W (F )[η, η−1] and that I∗(F ) is the image of KMW∗ (F ) →
W (F )[η, η−1]. Now the morphism KMW∗ (F ) → W (F )[η, η−1] commutes to
every data. We conclude using the Lemma 4.5 below. Thus we get in this way
unramified sheaves of powers of the fundamental ideal I∗ (see also [53]). ��

Let φ : M∗ → N∗ be a morphism (in the obvious sense) of between functors
Fk → Ab∗ endowed with data (D4) (i), (D4) (ii) and (D4) (iii) and
satisfying the Axioms (B0), (B1), (B2), (B3), (HA), (B4) and (B5) of
Theorem 2.46.

Denote for each F ∈ Fk by Im(φ)∗(F ) (resp. Ker(φ)∗(F )) the image
(resp. the kernel) of φ(F ) : M∗(F ) → N∗(F ). One may extend both to
functor Fk → Ab∗ with data (D4) (i), (D4) (ii) and (D4) (iii) induced
from the one on M∗ and N∗.

Lemma 3.35. Let φ : M∗ → N∗ be a morphism of as above. Then Im(φ)∗
and Ker(φ)∗ with the induced Data (D4) (i), (D4) (ii) and (D4) (iii)
satisfy the Axioms (B0), (B1), (B2), (B3), (HA), (B4) and (B5) of
Theorem 2.46.

Proof. The only difficulty is to check axiom (HA) (i). It is in fact very easy
to check it using the axioms (HA) (i) and (HA) (ii) for M∗ and N∗. Indeed
(HA) (ii) provides a splitting of the short exact sequences of (HA) (i) for
M∗ and N∗ which are compatible. One gets the axiom (HA) (i) for Im(φ)∗
and Ker(φ)∗ using the snake lemma. We leave the details to the reader. ��

3.3 Milnor–Witt K-Theory and Strongly
A

1-Invariant Sheaves

Fix a natural number n ≥ 1. Recall from [59] that (Gm)∧n denotes the
n-th smash power of the pointed space Gm. We first construct a canonical
morphism of pointed spaces

σn : (Gm)∧n → KMW
n

(Gm)∧n is a priori the associated sheaf to the naive presheaf Θn : X �→
(O×(X))∧n but in fact:

Lemma 3.36. The presheaf Θn : X �→ (O(X)×)∧n is an unramified sheaf
of pointed sets.
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Proof. It is as a presheaf unramified in the sense of our Definition 2.1 thus
automatically a sheaf in the Zariski topology. One may check it is a sheaf
in the Nisnevich topology by checking Axiom (A1). One has only to use
the following observation: let Eα be a family of pointed subsets in a pointed
set E. Then ∩α(Eα)

∧n = (∩αEα)
∧n, where the intersection is computed

inside E∧n. ��
Fix an irreducible X ∈ Smk with function field F . There is a tautological

symbol map (O(X)×)∧n ⊂ (F×)∧n → KMW
n (F ) that takes a symbol

(u1, . . . , un) ∈ (O(X)×)∧n to the corresponding symbol in [u1] . . . [un] ∈
KMW

n (F ). But this symbol [u1] . . . [un] ∈ KMW
n (F ) lies in KMW

n (X), that is
to say each of its residues at points of codimension 1 in X is 0. This follows
at once from the definitions and elementary formulas for the residues.

This defines a morphism of sheaves on ˜Smk. Now to show that this extends
to a morphism of sheaves on Smk, using the equivalence of categories of
Theorem 2.11 (and its proof) we end up to show that our symbol maps
commutes to restriction maps sv, which is also clear from the elementary
formulas we proved in Milnor–Witt K-theory. In this way we have obtained
our canonical symbol map

σn : (Gm)∧n → KMW
n

From what we have done in Chaps. 2 and 3, we know that KMW
n is a strongly

A
1-invariant sheaf.

Theorem 3.37. Let n ≥ 1. The morphism σn is the universal morphism
from (Gm)∧n to a strongly A

1-invariant sheaf of abelian groups. In other
words, given a morphism of pointed sheaves φ : (Gm)∧n → M , with M
a strongly A

1-invariant sheaf of abelian groups, then there exists a unique
morphism of sheaves of abelian groups Φ : KMW

n → M such that Φ ◦σn = φ.

Remark 3.38. The statement is wrong if we release the assumption that M
is a sheaf of abelian groups. The free strongly A

1-invariant sheaf of groups
generated by Gm will be seen in Sect. 7.3 to be non commutative. For n = 2,
it is a sheaf of abelian groups. For n > 2 it is not known to us.

The statement is also false for n = 0: (Gm)∧0 is just Spec(k)+, that is to
say Spec(k) with a base point added, and the free strongly A

1-invariant sheaf
of abelian groups generated by Spec(k)+ is Z, not KMW

0 . To see a analogous
presentation of KMW

0 see Theorem 3.46 below. ��
Roughly, the idea of the proof is to first use Lemma 3.4 to show that

φ : (Gm)∧n → M induces on fields F ∈ Fk a morphism KMW
n (F ) → M(F )

and then to use our work on unramified sheaves in Chap. 2 to observe this
induces a morphism of sheaves.

Theorem 3.39. Let M be a strongly A
1-invariant sheaf, let n ≥ 1 be an

integer, and let φ : (Gm)∧n → M be a morphism of pointed sheaves. For any
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field F ∈ Fk, there is unique morphism

Φ(F ) : KMW
n (F ) → M(F )

such that for any (u1, . . . , un) ∈ (F×)n, Φn(F )([u1, . . . , un]) = φ(u1, . . . , un).

Preliminaries. We will freely use some notions and some elementary results
from [59].

Let M be a sheaf of groups on Smk. Recall that we denote by M−1 the
sheaf M (Gm), and for n ≥ 0, by M−n the n-th iteration of this construction.
To say that M is strongly A

1-invariant is equivalent to the fact that
K(M, 1) is A

1-local [59]. Indeed from loc. cit., for any pointed space X , we
have HomH•(k)(X ;K(M, 1)) ∼= H1(X ;M) and HomH•(k)(Σ(X );K(M, 1)) ∼=
M̃(X)). Here we denote for M a strongly A

1-invariant sheaf of abelian groups
and X a pointed space by M̃(X ) the kernel of the evaluation at the base point
of M(X ) → M(k), so that M(X ) splits as M(k)⊕ M̃(X ).

We also observe that because M is assumed to be abelian, the map (from
“pointed to base point free classes”)

HomH•(k)(Σ(X );K(M, 1)) → HomH(k)(Σ(X );K(M, 1))

is a bijection.
From Lemma 2.32 and its proof we know that in that case, RHom•(Gm;

K(M, 1)) is canonically isomorphic to K(M−1, 1) and that M−1 is also
strongly A

1-invariant. We also know that RΩs(K(M, 1) ∼= M .
As a consequence, for a strongly A

1-invariant sheaf of abelian groups M ,
the evaluation map

HomH•(k)(Σ((Gm)∧n),K(M, 1)) → M−n(k)

is an isomorphism of abelian groups.
Now for X and Y pointed spaces, the cofibration sequence X ∨ Y →

X × Y → X ∧ Y splits after applying the suspension functor Σ. Indeed,
as Σ(X × Y) is a co-group object in H•(k) the (ordered) sum of the two
morphism Σ(X × Y) → Σ(X ) ∨ Σ(Y) = Σ(X ∨ Y) gives a left inverse to
Σ(X )∨Σ(Y) → Σ(X×Y). This left inverse determines anH•(k)-isomorphism
Σ(X ) ∨ Σ(Y) ∨ Σ(X ∧ Y) ∼= Σ(X × Y).

We thus get canonical isomorphisms:

M̃(X × Y) = M̃(X )⊕ M̃(Y)⊕ M̃(X ∧ Y)

and analogously

H1(X × Y;M) = H1(X ;M)⊕H1(Y;M)⊕H1(X ∧ Y;M)
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As a consequence, the product μ : Gm × Gm → Gm on Gm induces in
H•(k) a morphism Σ(Gm × Gm) → Z(Gm) which using the above splitting
decomposes as

Σ(μ) = 〈IdΣ(Gm), dΣ(Gm), η〉 : Σ(Gm) ∨ Σ(Gm) ∨ Σ((Gm)∧2) → Σ(Gm)

The morphism Σ((Gm)∧2) → Σ(Gm) so defined is denoted η. It can be shown
to be isomorphic in H•(k) to the Hopf map A

2 − {0} → P
1.

Let M be a strongly A
1-invariant sheaf of abelian groups. We will denote

by
η : M−2 → M−1

the morphism of strongly A
1-invariant sheaves of abelian groups induced

by η.
In the same way let Ψ : Σ(Gm∧Gm) ∼= Σ(Gm∧Gm) be the twist morphism

and for M a strongly A
1-invariant sheaf of abelian groups, we still denote by

Ψ : M−2 → M−2

the morphism of strongly A
1-invariant sheaves of abelian groups induced

by Ψ.

Lemma 3.40. Let M be a strongly A
1-invariant sheaf of abelian groups.

Then the morphisms η ◦Ψ and η

M−2 → M−1

are equal.

Proof. This is a direct consequence of the fact that μ is commutative. ��
As a consequence, for any m ≥ 1, the morphisms of the form

M−m−1 → M−1

obtained by composing m times morphisms induced by η doesn’t depend on
the chosen ordering. We thus simply denote by ηm : M−m−1 → M−1 this
canonical morphism.

Proof of Theorem 3.39 By Lemma 3.6 1), the uniqueness is clear. By a
base change argument analogous to [52, Corollary 5.2.7], we may reduce to
the case F = k.

From now on we fix a morphism of pointed sheaves φ : (Gm)∧n → M ,
with M a strongly A

1-invariant sheaf of abelian groups. We first observe that
φ determines and is determined by the H•(k)-morphism φ : Σ((Gm)∧n) →
K(M, 1), or equivalently by the associated element φ ∈ M−n(k).
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For any symbol (u1, . . . , ur) ∈ (k×)r, r ∈ N, we let S0 → (Gm)∧r be the
(ordered) smash-product of the morphisms [ui] : S

0 → Gm determined by ui.
For any integer m ≥ 0 such that r = n+m, we denote by [ηm, u1, . . . , ur] ∈
M(k) ∼= HomH•(k)(Σ(S

0),K(M, 1)) the composition

ηm ◦ Σ([u1, . . . , un]) : Σ(S
0) → Σ((Gm)∧r)

ηm

→ Σ((Gm)∧n)
φ→ K(M, 1)

The theorem now follows from the following:

Lemma 3.41. The previous assignment (m,u1, . . . , ur) �→ [ηm, u1, . . . , ur] ∈
M(k) satisfies the relations of Definition 3.3 and as a consequence induce a
morphism

Φ(k) : KMW
n (k) → M(k)

Proof. The proof of the Steinberg relation 1n will use the following
stronger result by P. Hu and I. Kriz:

Lemma 3.42. (Hu–Kriz [33]) The canonical morphism of pointed sheaves
(A1 − {0, 1})+ → Gm ∧ Gm, x �→ (x, 1 − x) induces a trivial morphism
Σ̃(A1 − {0, 1}) → Σ(Gm ∧ Gm) (where Σ̃ means unreduced suspension1) in
H•(k).

For any a ∈ k×−{1} the suspension of the morphism of the form [a, 1−a] :
S0 → (Gm)∧2 factors in H•(k)) through Σ̃(A1 − {0, 1}) → Σ(Gm ∧ Gm) as
the morphism Spec(k) → Gm ∧ Gm factors itself through A

1 − {0, 1}. This
implies the Steinberg relation in our context as the morphism of the form
Σ([ui, 1 − ui]) : Σ(S0) → Σ((Gm)∧2) appears as a factor in the morphism
which defines the symbol [ηm, u1, . . . , ur], with ui + ui+1 = 1, in M(k).

Now, to check the relation 2n, we observe that the pointed morphism

[ab] : S0 → Gm factors as S0 [a][b]→ Gm × Gm
μ→ Gm. Taking the suspension

and using the above splitting which defines η, yields that

Σ([ab]) = Σ([a]) ∨ Σ([b]) ∨ η([a][b]) : Σ(S0) → Σ(Gm)

in the group HomH•(k)(Σ(S
0),Σ(Gm)) whose law is denoted by ∨. This

implies relation 2n.
Now we come to check the relation 4n. For any a ∈ k×, the morphism

a : Gm → Gm given by multiplication by a is not pointed (unless a = 1).
However the pointed morphism a+ : (Gm)+ → Gm induces after suspension
Σ(a+) : S

1∨Σ(Gm) ∼= Σ((Gm)+) → Σ(Gm). We denote by < a >: Σ(Gm) →
Σ(Gm) the morphism in H•(k) induced on the factor Σ(Gm). We need:

1Observe that if k = F2, A1 − {0, 1} has no rational point.
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Lemma 3.43. 1) For any a ∈ k×, the morphism M−1 → M−1 induced by
< a >: Σ(Gm) → Σ(Gm) is equal to Id+ η ◦ [a].

2) The twist morphism Ψ ∈ HomH•(k)(Σ(Gm ∧Gm),Σ(Gm ∧ Gm)) and the
inverse, for the group structure, of IdGm∧ < −1 >∼=< −1 > ∧IdGm have
the same image in the set HomH(k)(Σ(Gm ∧Gm),Σ(Gm ∧Gm)).

Remark 3.44. In fact the map

HomH•(k)(Σ(Gm∧Gm),Σ(Gm∧Gm))→HomH(k)(Σ(Gm∧Gm),Σ(Gm∧Gm))

is a bijection. Indeed we know that Σ(Gm∧Gm)) is A1-equivalent to A
2−{0}

and also to SL2 because the morphism SL2 → A
2−{0} (forgetting the second

column) is an A
1-weak equivalence. As SL2 is a group scheme, the classical

argument shows that this space is A
1-simple. Thus for any pointed space

X , the action of πA
1

1 (SL2)(k) on HomH•(k)(X , SL2) is trivial. We conclude
because as usual, for any pointed spaces X and Y, with Y A

1-connected, the
map HomH•(k)(X ,Y) → HomH(k)(X ,Y) is the quotient by the action of the

group πA
1

1 (Y)(k).
Proof. 1) The morphism a : Gm → Gm is equal to the composition

Gm
[a]×Id→ Gm × Gm

μ→ Gm. Taking the suspension, the previous splittings
give easily the result.

2) Through the H•(k)-isomorphism Σ(Gm ∧ Gm) ∼= A
2 − {0}, the twist

morphism becomes the opposite of the permutation isomorphism (x, y) �→
(y, x). This follows easily from the definition of this isomorphism using the
Mayer–Vietoris square

Gm ×Gm ⊂ A
1 ×Gm

∩ ∩
Gm × A

1 ⊂ A
2 − {0}

and the fact that our automorphism on A
2 −{0} permutes the top right and

bottom left corner.
Consider the action of GL2(k) on A

2 − {0}. As any matrix in SL2(k) is a
product of elementary matrices, the associated automorphism A

2 − {0} ∼=
A

2 − {0} is the identity in H(k). As the permutation matrix

(
0 1

1 0

)
is

congruent to

(−1 0

0 1

)
or

(
1 0

0 −1

)
modulo SL2(k), we get the result. ��

Proof of Theorem 3.37 By Lemma 3.45 below, we know that for any
smooth irreducible X with function field F , the restriction map M(X) ⊂
M(F ) is injective.

As KMW
n is unramified, the Remark 2.15 of Sect. 1.1 shows that to produce

a morphism of sheaves Φ : KMW
n → M it is sufficient to prove that for any
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discrete valuation v on F ∈ Fk the morphism Φ(F ) : KMW
n (F ) → M(F )

maps KMW
n (Ov) into M(Ov) and in case the residue field κ(v) is separable,

that some square is commutative (see Remark 2.15).
But by Theorem 3.22, we know that the subgroup KMW

n (Ov) of K
MW
n (F )

is the one generated by symbols of the form [u1, . . . , un], with the ui ∈ O×
v .

The claim is now trivial: for any such symbol there is a smooth model X of
Ov and a morphism X → (Gm)∧n which induces [u1, . . . , un] when composed
with (Gm)∧n → KMW

n . But now composition with φ : (Gm)∧n → M gives
an element of M(X) which lies in M(Ov) ⊂ M(F ) which is by definition the
image of [u1, . . . , un] through Φ(F ). A similar argument applies to check the
commutativity of the square of the Remark 2.15: one may choose X so that
there is a closed irreducible Y ⊂ X of codimension 1, with OX,ηY = Ov ⊂
F . Then the restriction of Φ([u1, . . . , un]) ⊂ M(Ov) is just induced by the
composition Y → X → (Gm)∧n → M , and this is also compatible with the
sv in Milnor–Witt K-theory. ��
Lemma 3.45. Let M be an A

1-invariant sheaf of pointed sets on Smk.
Then for any smooth irreducible X with function field F , the kernel of the
restriction map M(X) ⊂ M(F ) is trivial.

In case M is a sheaf of groups, we see that the restriction map M(X) →
M(F ) is injective.

Proof. This follows from [52, Lemma 6.1.4] which states that LA1(X/U) is
always 0-connected for U non-empty dense in X . Now the kernel of M(X) →
M(U) is covered by HomH•(k)(X/U,M), which is trivial as M is his own π0

and LA1(X/U) is 0-connected. ��
We know deal with KMW

0 . We observe that there is a canonical morphism
of sheaves of sets Gm/2 → KMW

0 , U �→< U >, where Gm/2 means the

cokernel in the category of sheaves of abelian groups of Gm
2→ Gm.

Theorem 3.46. The canonical morphism of sheaves Gm/2 → KMW
0 is the

universal morphism of sheaves of sets to a strongly A
1-invariant sheaf of

abelian groups. In other words KMW
0 is the free strongly A

1-invariant sheaf
on the space Gm/2.

Proof. Let M be a strongly A
1-invariant sheaf of abelian groups. Denote

by Z[S] the free sheaf of abelian groups on a sheaf of sets S. When S is
pointed, then the latter sheaf splits canonically as Z[S] = Z ⊕ Z(S) where
Z(S) is the free sheaf of abelian groups on the pointed sheaf of sets S, meaning
the quotient Z[S]/Z[∗] (where ∗ → S is the base point). Now a morphism
of sheaves of sets Gm/2 → M is the same as a morphism of sheaves of
abelian groups Z[Gm] = Z⊕Z(Gm) → M . By the Theorem 3.37 a morphism
Z(Gm) → M is the same as a morphism KMW

1 → M .
Thus to give a morphism of sheaves of sets Gm/2 → M is the same as to

give a morphism of sheaves of abelian groups Z⊕KMW
1 → M together with
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extra conditions. One of this conditions is that the composition Z⊕KMW
1

[2]→
Z ⊕ KMW

1 → M is equal to Z ⊕ KMW
1

[∗]→ Z ⊕ KMW
1 → M . Here [∗] is

represented by the matrix

(
IdZ 0

0 0

)
and [2] by the matrix

(
IdZ 0

0 [2]1

)
. The

morphism [2]1 : KMW
1 → KMW

1 is the one induced by the square map on Gm.
From Lemma 3.14, we know that this map is the multiplication by 2ε = h.
recall that we set KW

1 := KMW
1 /h. Thus any morphism of sheaves of sets

Gm/2 → M determines a canonical morphism Z ⊕ KW
1 → M . Moreover

the morphism Z[Gm] → Z ⊕ KW
1 factors through Z[Gm] → Z[Gm/2]; this

morphism is induced by the map U �→ (1, < U >). ��
We have thus proven that given any morphism φ : Z[Gm/2] → M ,

there exists a unique morphism Z ⊕ KW
1 → M such that the composition

Z[Gm/2] → Z⊕KW
1 → M is φ. As Z⊕KW

1 is a strongly A
1-invariant sheaf

of abelian groups, it is the free one on Gm/2.
Our claim is now that the canonical morphism i : Z⊕KW

1 → KMW
0 is an

isomorphism.
We know proceed closely to proof of Theorem 3.37. We first observe

that for any F ∈ Fk, the canonical map Z[F×/2] → Z ⊕ KW
1 (F ) factors

through Z[F×/2] � KMW
0 (F ). This is indeed very simple to check using

the presentation of KMW
0 (F ) given in Lemma 3.9. We denote by j(F ) :

KMW
0 (F ) → Z⊕KW

1 (F ) the morphism so obtained.
Using Theorem 3.22 and the same argument as in the end of the proof

of Theorem 3.37 we see that the j(F )’s actually come from a morphism of
sheaves j : KMW

0 → Z⊕KW
1 . It is easy to check on F ∈ Fk that i and j are

inverse morphisms to each other. ��
The following corollary is immediate from the Theorem and its proof:

Corollary 3.47. The canonical morphism

KW
1 (F ) → I(F )

is an isomorphism.

We now give some applications concerning abelian sheaves of the form
M−1, see Sect. 2.2. From Lemma 2.32 if M is strongly A

1-invariant, so is
M−1. Now we observe that there is a canonical pairing:

Gm ×M−1 → M

In case M is a sheaf of abelian groups, as opposed to simply a sheaf of groups,
we may view M−1(X) for X ∈ Smk as fitting in a short exact sequence:

0 → M(X) → M(Gm ×X) → M−1(X) → 0 (3.8)
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Given α ∈ O(X)× that we view as a morphismX → Gm, we may consider the
evaluation at α evα : M(Gm×X) → M(X), that is to say the restriction map
through (α, IdX)◦ΔX : X → Gm×X . Now evα−ev1 : M(Gm×X) → M(X)
factor through M−1(X) and induces a morphism α∪ : M−1(X) → M(X).
This construction define a morphism of sheaves of sets Gm × M−1 → M
which is our pairing.

Iterating this process gives a pairing

(Gm)∧n ×M−n → M

for any n ≥ 1.

Lemma 3.48. For any n ≥ 1 and any strongly A
1-invariant sheaf, the above

pairing induces a bilinear pairing

KMW
n ×M−n → M , (α,m) �→ α.m

Proof. Let’s us prove first that for each field F ∈ Fk, the pairing (F×)∧n×
M−n(F ) → M(F ) factors through Z(F×)×M−1(F ) → KMW

n (F )×M−n(F ).
Fix F0 ∈ Fk and consider an element u ∈ M−n(F0). We consider the natural
morphism of sheaves of abelian groups on SmF0 , Z((Gm)∧n) → M |F0 induced
by the cup product with u, where M |F0 is the “restriction” of M to SmF0 . It
is clearly a strongly A

1-invariant sheaf of groups (use an argument of passage
to the colimit in the H1) and by Theorem 3.37, this morphism Z((Gm)∧n) →
M |F0 induces a unique morphism KMW

n → M |F0 . Now the evaluation of
this morphism on F0 itself is a homomorphism KMW

n (F0) → M(F0) and
it is induced by the product by u. This proves that the pairing (F×)∧n ×
M−n(F ) → M(F ) factors through Z(F×)×M−1(F ) → KMW

n (F )×M−n(F ).
Now to check that this comes from a morphisms of sheaves

KMW
n ×M−n → M

is checked using the techniques from Sect. 2.1. The details are left to the
reader. ��

Now let us observe that the sheaves of the form M−1 are endowed with a
canonical action of Gm. We start with the short exact sequence (3.8):

0 → M(X) → M(Gm ×X) → M−1(X) → 0

We let O(X)× act on the middle term by translations, through (u,m) �→
U∗(m) where U : Gm × X ∼= Gm × X is the automorphism multiplication
by the unit u ∈ O(X)×. The left inclusion is equivariant if we let O(X)×

act trivially on M(X). Thus M−1 gets in this way a canonical and functorial
structure of Gm-module.
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Lemma 3.49. If M is strongly A
1-invariant, the canonical structure of Gm-

modules on M−1 is induced from a KMW
0 -module structure on M−1 through

the morphism of sheaves (of sets) Gm → KMW
0 which maps a unit u to its

symbol < u >= η[u] + 1. Moreover the pairing of Lemma 3.48, for n ≥ 2

KMW
n ×M−n+1 → M−1

is KMW
0 -bilinear: for units u, v and an element m ∈ M−2(F ) one has:

< u > ([v].m) = (< u > [v]).m = [v].(< u > .m)

Proof. The sheaf X �→ M(Gm×X) is the internal function object MZ(Gm)

in the following sense: it has the property that for any sheaf of abelian groups
N one has a natural isomorphism of the form

HomAbk(N ⊗ Z(Gm),M) ∼= HomAbk(N,MZ(Gm))

where Abk is the abelian category of sheaves of abelian groups on Smk and ⊗
is the tensor product of sheaves of abelian groups. The above exact sequence
corresponds to the adjoint of the split short exact sequence

0 → Z̃(Gm) → Z(Gm) → Z → 0

This short exact sequence is an exact sequence of Z(Gm)-modules (but non
split as such !) and this structure induces exactly the structure of Z(Gm)-
module on MGm and M−1 that we used above.

In other words, the functional object M Z̃(Gm) is isomorphic to M−1 as a
Z(Gm)-module, where the structure of Z(Gm)-module on the sheaf Z̃(Gm)
is induced by the tautological one on Z(Gm).

Now as M is strongly A
1-invariant the canonical morphism

MKMW
1 → M−1 = M Z̃(Gm)

induced by Z̃(Gm) → KMW
1 , is an isomorphism. Indeed given any N a

morphism N ⊗ Z̃(Gm) → M factorizes uniquely through N ⊗ Z(Gm) →
N⊗KMW

1 as the morphism Z̃(Gm) → KMW
1 is the universal one to a strongly

A
1-invariant sheaf by Theorem 3.37.
Now the morphism Z̃(Gm) → KMW

1 is Gm-equivariant where Gm acts on
KMW

1 through the formula on symbols (u, [x]) �→ [ux]− [u]. Now this action
factors through the canonical action of KMW

0 by the results of Sect. 3.1 as in
KMW

1 one has [ux]− [u] =< u > [x].
The last statement is straightforward to check. ��
For n ≥ 2 we thus get also on M−n a structure of KMW

0 -module by
expressing M−n as (M−n+1)−1. However there are several ways to express
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it this way, one for each index in i ∈ {1, . . . , n}, by expressing M−n(X) as
a quotient of M((Gm)n × X) and letting Gm acts on the given i-th factor.
One shows using the results from Sect. 3.1 that this action doesn’t depend
on the factor one chooses. Indeed given F0 ∈ Fk and u ∈ M−n(F0), we may
see u as a morphism of pointed sheaves (over F0) u : (Gm)∧n → M |F0 and
Theorem 3.37 tells us that u induces a unique u′ : KMW

n → M |F0 . Now the
action of a unit α ∈ (F0)

× on u through the i-th factor of M((Gm)n × X)
corresponds to letting α acts through the i-th factor Z(Gm) of (Z(Gm))⊗n

and compose with (Z(Gm))⊗n → KMW
n → M . A moment of reflexion shows

that this action of α on a symbol [a1, . . . , an] ∈ KMW
n (F0) is explicitly given

by [a1, . . . , α.ai, . . . , an]− [a1, . . . , α, . . . , an] ∈ KMW
n (F0). Now the formulas

in Milnor–Witt K-theory from Sect. 3.1 show that this is equal to

[a1] . . . (< α > .[ai]) . . . [an] =< α > [a1, . . . , an]

which doesn’t depend on i.
This structure of KMW

0 = GW-module on sheaves of the form M−1 will
play an important role in the next sections. We may emphasize it with the
following observation. Let F be in Fk and let v be a discrete valuation on F ,
with valuation ring Ov ⊂ F . For any strongly A

1-invariant sheaf of abelian
groups M , each non-zero element μ in Mv/(Mv)

2 determines by Corollary
2.35 a canonical isomorphism of abelian groups

θμ : M−1(κ(v)) ∼= H1
v (Ov;M)

Lemma 3.50. We keep the previous notations. Let μ′ = u.μ be another non
zero element of My/(M2

y) and thus u ∈ κ(y)×. Then the following diagram
is commutative:

M−1(κ(v))
<u>∼= M−1(κ(v))

θμ ↓ θμ′ ↓
H1

v (Ov;M) = H1
v (Ov;M)

The proof is straightforward and we leave the details to the reader.
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