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We continue to let K denote a field of characteristic different from 2, which is
“fixed” in the sense that it will not be mentioned in statements of the results.

1. The filtration on the Witt ring

At the end of Chapter 1 we defined rings Ŵ (K) and W (K) = Ŵ (K)/⟨H⟩ and
surjective ring homomorphisms

dim : Ŵ (K) → Z,

dim0 : W (K) → Z/2Z.
By definition, the augmentation ideal Î is the kernel of dim : Ŵ (K) → Z and
similarly the fundamental ideal I = I(K) is the kernel of dim0 : W (K) → Z/2Z.
(In particular, since Z/2Z is a field, I is a maximal ideal.) Thus elements of I
correspond to anisotropic quadratic forms of even dimension.

To a remarkable degree, the modern algebraic theory of quadratic forms is con-
cerned with the filtration given by powers of the fundamental ideal:

W (F ) ⊃ I ⊃ I2 ⊃ . . . ⊃ In . . . .

We cannot resist mentioning the following beautiful result right away: although we
are far from having assembled enough machinery to prove it, it is extremely useful
in understanding the big picture on the fundamental filtration.

Theorem 1. (Arason-Pfister Haupsatz, 1971) Let q be a nontrivial anisotropic
quadratic form. If q ∈ In, then dim q ≥ 2n.

Corollary 2. The Witt ring is separated for the I-adic topology:
∩

n≥1 I
n = 0.
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Proof. Indeed, a nonzero element of the intersection would represent a notnrivial
anisotropic form of dimension at least 2n for all n ∈ Z+: absurd. �

In particular, it is of interest to compute the successive quotients In

In+1 . Note that

each In/In+1 is a W (F )/I = Z/2Z-module, i.e., an abelian group in which each
nonzero element has order 2.

By Corollary 2, for a nontrivial anisotropic quadratic form q, there exists a unique
n ∈ N such that f ∈ In \ In+1, and thus we may consider the element ιn(f) :=
f + In+1 ∈ In/In+1 as a nontrivial invariant of f .

Let us try on this philosophy for size. If q ∈ I0 \ I1, then q has odd dimen-
sion, and ι0(q) is simply the unique nontrivial element of Z/2Z. This is apparently
not so interesting, but in fact already this allows us to deduce some useful facts.

Proposition 3. Let p be a prime ideal of the W (K).
a) If the integral domain W (K)/p has characteristic 0, then W (K)/p ∼= Z (so p is
not maximal).
b If the integral domain W (K)/p has positive characteristic p, then W (K)/p ∼=
Z/pZ (so p is maximal).

Proof. For any a ∈ K× we have an identity

(⟨a⟩ + ⟨1⟩)(⟨a⟩ − ⟨1⟩) = ⟨a⟩ ⊗ ⟨a⟩ − ⟨1⟩ = ⟨a2⟩ − ⟨1⟩ = ⟨1⟩ − ⟨1⟩ ≡ ⟨1,−1⟩ ≡ 0.

Writing a for the class of ⟨a⟩ in W (K)/p, since this quotient ring is a domain
we have a = ±1. Since W (K) is additively generated by the unary forms ⟨a⟩,
W (K)/p is additively generated by 1, i.e., is a cyclic group, either infinite or of
prime order. �

Proposition 4. The unique prime ideal p of W (K) such that W (K)/p has char-
acteristic 2 is the fundamental ideal I.

Proof. Let p be a prime ideal such that W (K)/p has characteristic 2. Then by
Proposition 3 we in fact have that for all a ∈ K×, a = 1 in W (K)/p (by our
assumption that the residue characteristic is 2, the distinction between 1 and −1
disappears!). But then this means that reduction modulo p sends a quadratic form
q to its dimension mod 2, whence the kernel is none other than I itself. �

Now we press on. Suppose q ∈ I, i.e., q has even dimension. We wish to define
a natural “invariant” of f landing in I/I2. Well, let’s cheat: what invariants of
quadratic forms taking values in elementary 2-groups do we already know? Exactly
one: the discriminant d(q) ∈ K×/K×2.

A little thought shows that something is slightly awry here: although the dis-

criminant is a well-defined additive homomorphism from Ŵ (K) → K×/K×2, since
the hyperbolic plane has discriminant −1, then (unless −1 is a square in K, a hy-
pothesis that we certainly do not wish to impose), the discriminant does not factor
through W (K).

This is disappointing, but do not lose heart. In the words of Lam, “[T]here exists
an ingenious way to remedy this.” Namely, for an n-dimensional quadratic form q,
we define its signed determinant

d±(q) = (−1)
n(n−1)

2 d(q) ∈ K×/K×2.
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In other words, if dim q ≡ 0, 1 (mod 4), then d±(q) = d(q), whereas if dim q ≡ 2, 3
(mod 4), d±(q) = −d(q). In particular, d±(H) = 1.

So does d± factor through W (F )? No, still not quite. The problem is that d±
is now not necessarily a homomorphism. What we have is

d±(q ⊕ q′) = ϵd±(q)d±(q′),

where ϵ ∈ {±1} depends only on the dimensions of q and q′ mod 4. For instance,
if dim q ≡ dim q′ ≡ 1 (mod 4), then ϵ = 1. However, if dim q and dim q′ are both

even, then one sees easily that ϵ = 1. It follows that d± : Î → K×/K×2 is a
(clearly surjective) group homomorphism, which factors through a surjective ho-
momorphism d± : I → K×/K×. Our task is now to show that the kernel of d± is
precisely I2.

For one direction, recall Corollary 1.30, which says that I is additively generated by
classes of binary forms ⟨1,−a⟩. So I2 is generated by classes of quaternary forms

⟨1,−a⟩ ⊗ ⟨1,−b⟩ = ⟨1,−a,−b, ab⟩.
The discriminant of such a quaternary form is 1·−a·−b·ab = a2b2 ≡ 1 (mod K)×2.
Thus I2 ⊂ ker(d±). Thus d± factors through a surjective homomorphism α :
I/I2 → K×/K×. To show that α is an isomorphism we will construct the in-
verse! Namely, define β : K×/K×2 by β : a 7→ ⟨1,−a⟩. Then we have (denoting
equivalence in the Witt ring by ≡)

β(a) + β(b) − β(ab) ≡ ⟨1,−a, 1,−b,−1, ab⟩ ≡ ⟨1,−a,−b, ab⟩ ∈ I2,

so β is a homomorphism. It is easy to see that α ◦ β = 1. Moreover, the relation
β(αq) = q holds for q of the form ⟨1,−a⟩ which is a set of generators for I/I2, so we
must have β ◦α = 1. Thus α and β are inverse isomorphisms, and we have proved:

Theorem 5. The signed determinant induces an isomorphism of groups

d± : I/I2
∼→ K×/K×2.

It follows that we have an extension of abelian groups

0 → I/I2 → W (K)/I2 → W (K)/I → 0.

Thus we have an extension

1 → K×/K×2 → W (K)/I2 → Z/2Z → 0.

A splitting of this sequence amounts to the existence of an odd-dimensional anisotropic
form q such that d±(q ⊕ q) = 1. But since q is odd dimensional, dim q ⊕ q ≡ 2

(mod 4), so d±(q⊕ q) = −1d(q⊕ q) = −d(q)2 = −1, so this happens iff −1 ∈ K×2

.
In the general case, we define an explicit extensoin of Z/2Z by K×/K×, called
Q(K), by the following twisted group law:

(x, y) ⋆ (x′, y′) = (xx′ · (−1)y+y′
, y + y′).

Now a straightforward calculation gives the following important result.

Theorem 6. (Pfister) The set map

(dim0, d±) : M(K) → Q(K)

is a monoid homomorphism, inducing a group isomorphism W (K)/I2 ∼= Q(K).
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Exercise: Prove Proposition 6.

An immediate, but important, consequence of this is the following

Corollary 7. (Pfister) I2 consists of classes of even dimensional forms q with

d(q) = (−1)
n(n−1)

2 .

In turn, we deduce the following.

Corollary 8. A nontrivial anisotropic form q ∈ I2 has dimension at least 4.

Proof. By virtue of being in I, the dimension of q must be even, so it remains to
see that q cannot have dimension 2. But a 2-dimensional form in I2 has d(q) =
−d±(q) = −1, thus (Exercise 1.XX) q ∼= H and is therefore isotropic. �

Theorem 9. (No u-invariant 3) If K admits an anisotropic ternary form, it admits
an anisotropic quaternary form.

Proof. Let q be an anisotropic ternary quadratic form, say of discriminant d. Con-
sider the unary quadratic form q′ = ⟨−d⟩. Then q and q′ have the same mod
2 dimension and the same signed discriminant but represent distinct elements of
W (K), so by Theorem 8 there exists q′′ := q−q′ ∈ I2\0. Therefore q is a nontrivial
anisotropic form in I2, so by Corollary 8 it has dimension at least 4. �

Theorem 10. For a field K, TFAE:

(i) Ŵ (K) is Noetherian.
(ii) W (K) is Noetherian.
(iii) K×/K×2 is finite.

Proof. Quotients of Noetherian rings are Noetherian, so (i) =⇒ (ii). (ii) =⇒
(iii): if W (K) is Noetherian, then the fundamental ideal I is a finitely generated
R-module, so I/I2 ∼= K×/K×2 is a finitely generated R/I = Z/2Z-module, which
simply means that it is a finite Z/2Z-vector space. (iii) =⇒ (i): by diagonaliza-

tion, Ŵ (K) is additively generated by unary forms ⟨a⟩ for a ∈ K×/K×2. Thus if

K×/K×2 is finite, then Ŵ (K) is finitely generated as a Z-module, hence certainly
a Noetherian ring. �

2. Some Witt Ring Computations

It would now be natural to ask for a description of the quotient I2/I3. But this
turns out to be more intricate than the preceding cases, to the extent that a study
of certain other algebraic objects is a prerequisite. It is interesting to pause here
and see some applications of the apparently modest machinery we have already
developed to the computation of Witt rings.

To begin at the beginning:

Proposition 11. For a field K, TFAE:
(i) K admits no quadratic field extensions (“quadratically closed”).
(ii) K× = K×2.
(iii) There is a (unique!) ring isomorphism W (K) = Z/2Z.
(iv) I = 0.
(v) I = I2.
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Proof. (i) ⇐⇒ (ii) is basic field theory. Over any field, we have the trivial
anisotropic form and the one-dimensional forms, which correspond to K×/K×2. If
K is quadratically closed, this gives two anisotropic forms so far. (ii) =⇒ (iii): if
K is quadratically closed, every equation x2 = a for a ∈ K× has a solution, so every
1-dimensional form is universal and thus every 2-dimensional form is isotropic. It
follows that #W (K) = 2 and then that W (K) = Z/2Z, the unique ring with two
elements. (iii) =⇒ (iv) follows from the fact that W (K)/I ∼= Z/2Z. (iv) =⇒ (v)
is clear. Finally, in general we have I/I2 ∼= K×/K×2, so (v) =⇒ (ii). �

Let us reexamine the computation of W (R) in light of our recently acqiuired knowl-
edge. It follows from Sylvester’s Law of Nullity (Theorem 1.25) that representatives
for the nontrivial anisotropic quadratic forms are n⟨1⟩ for n ∈ Z+ and n⟨−1⟩ for
n ∈ Z. In the Witt ring, ⟨−1⟩ ≡ −⟨1⟩, so that as an abelian group W (R) ∼= Z.
Since (m⟨1⟩) ⊗ (n⟨1⟩) = mn⟨1⟩, it follows easily that indeed W (R) ∼= Z as a ring.
Moreover, since W (R)/I ∼= Z/2Z, this means that I = 2Z and thus In = 2nZ for all
n ∈ Z+. It follows that for all n, In/In+1 ∼= Z/2Z. For n = 1 we can corroborate
this as follows:

I/I2 ∼= R×/R×2 ∼= Z/2Z.
Thus we have an example of a field in which for all n > 0, In ̸= 0, however in a
very simple way. Soon enough we will generalize this example by showing that any
ordering on a field gives rise to a surjective ring homomorphism W (K) → Z.

Our next order of business is to compute the Witt ring of a finite field Fq (for
q odd, of course). As in Exercise X.X, the key classical fact here is that any bi-
nary quadratic form over a finite field is universal. This is a very special case of
the Chevalley-Warning theorem (CITE), but in this case there is a very agreeably
short, elementary proof. Namely, we may assume that q = ax2 + by2 for ab ∈ F×

q ,

and let c ∈ F×
q . We are trying to “solve the equation ax2 + by2 = c for x, y ∈ Fq.

Solving for x2 (why not?) gives

x2 =
1

a

(
c− by2

)
.

Now, as x ranges over all elements of Fq, evidently x2 takes on exactly q−1
2 +1 = q+1

2
distinct values. A moment’s thought shows that, similarly, as y ranges over all ele-
ments of Fq, 1

a

(
c− by2

)
takes on exactly q+1

2 distinct values. If these sets of values

were disjoint, then we would have q+1
2 + q+1

2 = q + 1 different elements of Fq – too
many!

Just to give a name to this general property of fields, say that a field K is quadrat-
ically C1 if every binary form over K is universal (equivalently, every ternary form
is anisotropic). Now the key observation:

Proposition 12. For a quadratically C1 field K, I2 = 0.

Proof. Indeed, if not, then by Corollary 8, there is an anisotropic form of dimension
at least 4. This is a contradiction, with one dimension to spare! �

So:

Theorem 13. Let K be a quadratically C1 field. Then:
a) W (K) = Q(K) is an extension of Z/2Z by K×/K×2, split iff −1 ∈ K×.
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b) Let q1 and q2 be nontrivial anisotropic forms. Then q1 ∼= q2 iff dim(q1) = dim(q2)
and d(q1) = d(q2).

Proof. Since I2 = 0, part a) follows immediately from Theorem 6. As for part b),
it is certainly always the case that congruent anisotropic forms have equal mod
2 dimension and discriminant. Conversely, assume that their mod 2 dimensions
and discriminants agree. Then since K is quadratically C1, q1 and q2 both have
dimension 1, in which case having equal discriminants means they are congruent,
or both have dimension 2, equal discriminant d and are both universal, so each is
congruent to ⟨1, d⟩ (Exercise 1.X). �

Corollary 14. Let Fq be a finite field.
a) If q ≡ 1 (mod 4), then W (K) is isomorphic to Z/2Z[t]/(t− 1)2.
b) If q ≡ 3 (mod 4), then W (K) is isomorphic to the ring Z/4Z.

Proof. In each case, since F×
q is cyclic of even order, F×

q /F×2
q

∼= Z/2Z, so by The-
orem 13, W (K) is, as an abelian group an extension of Z/2Z by Z/2Z. Moreover,
the extension is split iff −1 is a square in Fq iff q ≡ 1 (mod 4).
Case 1: q ≡ 3 (mod 4), then W (K) ∼= Z/4Z as an abelian group. To show that
this is indeed an isomorphism of rings, it suffices to check that the multiplicative
identity does indeed have additive order 4, or even that 2 · ⟨1⟩ = x2 + y2. But
the sum of two squares form is hyperbolic iff −1 is a square in K, which we have
assumed it isn’t.
Case 2: q ≡ 1 (mod 4). Then W (K) ∼= Z/2Z⊕ Z/2Z. Among commutative unital
rings with this underlying abelian group, it is easy to see that there are 2: the direct
product Z/2Z×Z/2Z, and the nonreduced local ring Z/2Z[t]/(t−1)2. In the former
case there would be two maximal ideals of residue characteristic 2, contradicting
Proposition 4. Thus it must be the latter case that obtains. �

Other quadratically C1 fields: a function field in one variable over an algebraically
closed field, a Laurent series field over an algebraically closed field, a Henselian
valued field with algebraically closed residue field. To pick a simple example:

Corollary 15. Let C be an algebraically closed field of characteristic different from
2. Then W (C((t))) ∼= Z/2Z[t]/(t− 1)2.

Proof. Indeed C((t)) is a quadratically C1 field in which −1 is a square, so by
Theorem 13a) as additive groups we have W (C((t)) ∼= C((t))×/C((t))×2 ×Z/2Z ∼=
(Z/2Z)2. The same argument as in the proof of Corollary 14 allows us to conclude
that the ring structure is

W (C((t)) ∼= Z/2Z[t]/(t− 1)2.

�

The reader with a very strong algebra background will recognize that every field in
the above list of quadratically C1 fields has vanishing Brauer group. This is a clue
that our next invariant I2/I3 should have something to do with division algebras
over K. Our next major task is to motivate – for all readers! – the connection
between quadratic forms and the simplest and best understood class of division
algebras, the (nonsplit) quaternion algebras.
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3. Some Witt Kernel computations

Let L/K be a field extension. If (V, q) is a quadratic space over K, then we may
extend scalars to get a quadratic space (V, q)/L over L. Namley, we take the

underlying vector space to be VL = V ⊗K L and we put q(v ⊗ α) := α2q(v). If
e1, . . . , eN is a K-basis for V , then it is also an L-basis for VL and the Gram matrix
M of the associated bilinear form BL(x, y) = 1

2 (qL(x + y) − qL(x) − qL(y)) is the
same as the Gram matrix of (V, q). In particular, (V, q)/L is nonsingular iff (V, q)
is nonsingular.

In the language of quadratic polynomials, scalar extension is yet more straigh-
forward: we have a natural inclusion of polynomial rings K[x] ↪→ L[x] by which we
may view any homogeneous quadratic polynomial with K-coefficients as a homo-
geneous quadratic polynomial with L-coefficients.

This scalar extension process q 7→ qL, since it preserves nonsingularity, induces

a map on Witt-Grothendieck rings Ŵ (K) → Ŵ (L). It is easy to see that this is in
fact a homomorphism of rings. Moreover, certainly HL = H – i.e., this homomor-
phism carries the hyperbolic plane to itself. Therefore it induces a homomorphism
on Witt rings

ΦL
K : W (K) → W (L).

The functorial perspective on Witt rings is as follows: not only do we want to
understand the Witt ring of any given field K, but we wish to understand the
homomorphisms W (K) → W (L) induced by all field extensions L. Especially, we
wish to compute the Witt kernel ker ΦL

K . This consists of quadratic forms over K
which become hyperbolic over L. On the other hand, especially from an arithmetic
geometric perspective, it is just as interesting if not more so to determine which
anisotropic quadratic forms over K become isotropic over L. In general the latter
is a more delicate question.

There is, however, one situation in which we can speak of anisotropy directly
and then formally deduce the Witt kernel. Namely, say a field extension L/K
is anisotropic if for every anisotropic quadratic form q over K, the extension q/L
to L remains anisotropic.

Lemma 16. If L/K is an anistropic extension, then the Witt kernel is trivial.

Proof. Suppose on the contrary that there exists a nonhyperbolic quadratic form
q over K such that qL ∼= Hn. As for any nondegenerate quadratic form, we may
write q as the direct sum of an anistropic form q′ (the anistropic core) and some
number of hyerbolic planes. By our assumption, q′ is nontrivial. Then [q] = [q′] in
the Witt ring, so [q′] is a nontrivial element of the Witt kernel. �
Proposition 17. For any field K, let K(t) be the univariate rational function field
over K. Then K(t)/K is an anistropic extension.

Proof. Step 1: Let K be any field, and let (f1, . . . , fn) ∈ K(t)n be an n-tuple of
rational functions, not all zero. Then there exists a nonzero rational function f
such that (ff1, . . . , ffn) is a primitive vector in K[t], i.e., each ffi ∈ K[t] and
gcd(ff1, . . . , ffn) = 1. Indeed this holds with K[t] and K(t) replaced by any UFD
(even GCD-domain) and its fraction field.
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Step 2: Let q = a1x
2
1 + . . . + anx

2
n be a nonsingular quadratic form over K such

that qK(t) is isotropic: that is, there exist rational functions f1, . . . , fn, not all zero,
such that

a1f
2
1 + . . . + anf

2
n = 0.

Let f ∈ K(t)× be the rational function as in Step 1; then multiplying through by f2

we get a primitive polynomial solution, i.e., there exist polynomials p1(t), . . . , pn(t) ∈
K[t] with gcd(p1(t), . . . , pn(t)) = 1 and

a1p1(t)2 + . . . + anpn(t)2 = 0.

Now we substitute t = 0 (or any value of K): we cannot have p1(0) = . . . = pn(0) =
0, because then all of the pi’s would be divisible by t, contradicting primitivity.
Therefore q(p1(0), . . . , pn(0)) = 0 shows that q is isotropic over K. �

Corollary 18. A purely transcendental extension L/K is an anisotropic extension.

Exercise X.X: Prove Corollary 18.

Remark: The proof of Proposition X.X used only that q was a form – i.e., a ho-
mogeneous polynomial – not that it was a quadratic form. Indeed any system
of homogeneous polynomials would work as well, so the argument really shows: if
V/K is a projective variety which has a K(t)-rational point, then it has a K-rational

point.1

Theorem 19. (Springer) Let L/K be a field extension of finite odd degree d. Then
L/K is anisotropic.

Proof. We go by induction on the degree, the case d = 1 being trivial. Suppose
the result holds for all field extensions of odd degree less than d, and L/K be an
extension of odd degree d. If L/K had any proper subextension, then we would be
done by a dévissage argument. So we may assume in particular that L is monogenic
over K: L = K[x]. Let p(t) ∈ K[t] be the minimal polynomial of x. Let q be an
anisotropic quadratic form over K which becomes isotropic over L: i.e., there exists
an equation

(1) q(g1(t), . . . , gn(t)) = h(t)p(t)

with polynomials gi, h ∈ K[t], not all gi = 0, and M := max deg gi ≤ d−1. As in the
proof of Proposition 17, we may also assume that (g1, . . . , gn) is a primitive vector
in K[t]. Since q is anisotropic, the left hand side of (1) has degree 2M ≤ 2d − 2,

so deg h is odd and at most d − 2. In particular, h has an irreducible factor h̃
of odd degree at most d − 2; let y be a root of h̃ in K. Taking t = y in (1),
we see that q(g1(y), . . . , gn(y)) = 0. Note that since K[t] is a PID, the condition
gcd(g1, . . . , gn) = 1 is equivalent to the fact that 1 ∈ ⟨g1, . . . , gn⟩, which implies
that the polynomials g1, . . . , gn remain setwise coprime as elements of K[y][t]. In
particular, not all gi(y) are equal to 0, so that qK[y] is isotropic. By induction, this
implies that q was isotropic, contradiction! �

1The same conclusion can be shown for arbitrary varieties over any infinite field, or for complete
varieties over a finite field. I don’t know whether it is true for arbitrary varieties over a finite field.
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Remark: Recall from [FT, §11] that a field is formally real if for all n ∈ Z+, the
sum of n squares form [n]⟨1⟩ is anisotropic. Thus as a special case of Springer’s
Theorem, an odd degree extension of a formally real field remains formally real.
This was proved as [FT, Prop. 95] and indeed we have essentially reproduced the
argument given there.

Let us now turn things around and ask what properties are implied by an anisotropic
extension of fields L/K. Note that an element of the Witt Kernel must be even-
dimensional, so let’s look at the simplest case: which binary forms lie in ker ΦL

K? By
Exercise X.X, a binary form is isometric to the hyperbolic plane iff it has discrim-
inant −1. Therefore the form ⟨a, b⟩ lies in ker ΦL

K iff −ab ∈ L×2 and represents a
nontrivial element if −ab ∈ K×\K×2. In other words, the polynomial t2+ab is irre-
ducible over K but has a root over L: this happens iff L ⊃ K(

√
−ab). In particular,

there are no anisotropic binary forms in the Witt kernel if K is algebraically closed
in L or if L/K has odd degree (the latter being consistent with Springer’s theorem).

On the other hand, suppose that L = K(
√
a) is a quadratic extension. Then a

nontrivial element of the Witt kernel is given by the binary form α = ⟨1,−a⟩.
Since the Witt kernel is an ideal, it follows that the entire principal ideal αW (K)
lies in the Witt kernel. Remarkably, we have equality:

Theorem 20. For a ∈ K× \ K×2, the kernel of the canonical map W (K) →
W (K(

√
a)) is the principal ideal αW (K).

We will need the following result in the proof.

Lemma 21. Let K be a field and L = K(
√
a). Let q be an anisotropic form over

K. Then q becomes isotropic over L iff q contains a binary subform isometric to
⟨b⟩ · α for some b ∈ K×.

Proof. Certainly ⟨b⟩ ·α becomes hyperbolic over L, so if q contains such a subform
it becomes isotropic over L. Conversely, write q = ⟨b1, . . . , bn⟩ and suppose that qL
is isotropic, so there exists an equation

n∑
i=1

bi(xi + yi
√
a)2 = 0

with xi, yi ∈ K and not all zero. Equating the rational and irrational parts, we get

(2)
n∑

i=1

bix
2
i + a

n∑
i=1

biy
2
i = 0

and

(3)

n∑
i=1

bixiyi = 0.

Now (3) expresses the orthogonality of the vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn) in the quadratic space (Kn, q), whereas (2) implies q(x) = −aq(y).
Since q is anisotropic, we get x = 0 ⇐⇒ q(x) = 0 ⇐⇒ q(y) = 0 ⇐⇒ y = 0,
but by assumption x and y cannot both be zero, hence neither of them are zero.
Therefore q contains the binary form

⟨q(x), q(y)⟩ = ⟨−aq(y), q(y)⟩ ≡ q(y) · α.
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�

Now we give the proof of Theorem 20. We claim that for any anisotropic form q
in the Witt kernel, we have q ∼= α ⊗ q′ for some quadratic form q′: this certainly
suffices to prove the theorem. Recall that dim q is necessarily even. We prove the
result by induction on m = dim q

2 , the case m = 0 being trivial. By Lemma 22,
there is a quadratic form r and an isometry q ∼= ⟨b⟩ · α⊕ r. By Witt Cancellation,
r becomes hyperbolic over L = K(

√
a). By induction, this gives us r′ such that

r ∼= r′ ⊗ α and thus

q ∼= ⟨b⟩ · α⊕ (r′ ⊗ α) ∼= (⟨b⟩ ⊕ r′) ⊗ α.

�

Corollary 22. Let q be a quadratic form over K of dimension 2m that becomes
hyperbolic over L = K(

√
a). Then:

a) −a · q ∼= q.
b) If q is anistropic, then d(q) = (−a)m and d±(q) = am.
c) If q also becomes hyperbolic over K(

√
−a), then 2q = 0 ∈ W (K).

Proof. a) By Theorem 20, we may write q = [r]H ⊕ (q′ ⊗ α) for some q′. But
−a ·H ∼= H and −a · α = ⟨−a, 1⟩ ∼= α, we have −a · q ∼= q.

b) If q is anisotropic, r = 0 and q ∼= q′ ⊗ α. A computation gives

d(q) = (−a)m, d±(q) = (−1)md(q) = am.

c) Suppose that q is also hyperbolic over K(
√
−a). If

√
−a ∈ K, then q is

hyperbolic over K, i.e., q = 0 ∈ W (K). If K(
√
−a) ) K, then applying part a)

with L = K(
√
−a), we get a · q ∼= q, so 2q ∼= q + q ∼= (a · q) + (−a · q) = ⟨a,−a⟩ · q =

H · q = 0 ∈ W (K). �

In fact Corollary 22c) is the result that we really want – it will be used later on
in the proof of Pfister’s Local-Global Principle, the biggest single theorem in this
chapter. Thus, although there is certainly much more to be said about Witt kernels
– e.g., finite extensions of degree 2m > 2, nonrational function fields – we press on
to the next topic.

4. Orderings and quadratic forms

In looking over the simple Witt ring computations of the previous section, one sees
that sometimes the Witt ring is (as an additive group) torsion and sometimes it is
not. In particular, over the real numbers, for any n ∈ Z+, the sum of n squares
form n⟨1⟩ is anistropic, since indeed a sum of real squares cannot be zero unless
every element is zero.

This argument extends to all formally real fields. A field K is formally real
if it satisfies either of the following equivalent conditions:

(FR1) There does not exist n ∈ Z+ and x1, . . . , xn ∈ K such that −1 = x2
1+. . .+x2

n.
(FR2) For all n, if x2

1 + . . . + x2
n = 0, then x1 = . . . = xn = 0.

Formally real fields play an important role in general field theory: indeed, see
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[FT, Ch. 11] for an introduction.2

Hand in hand with the notion of formal reality is that of ordered fields. An order-
ing on a field K is a total ordering < on the underlying set of K which is compatible
with the field axioms in the sense that it satisfies the following properties:

(OF1) ∀x1, x2, y1, y2 ∈ K, x1 ≤ x2, y1 ≤ y2 =⇒ x1 + y1 ≤ x2 + y2.
(OF2) ∀x, y ∈ K, x, y ≥ 0 =⇒ xy ≥ 0.

For an ordering < on a field K, we may consider the associated positive cone

P = P< = {x ∈ K | x > 0}.

The positive cone of any ordering satisfies the following properties:

(PC1) P + P ⊂ P ,
(PC2) P · P ⊂ P ,
(PC3) P ∪ (−P ) = K×,
(PC4) P ∩ (−P ) = ∅,

and conversely, any subset P ⊂ K satisfying these four axioms is the positive
cone of a unique ordering on K. Thus there is no mathematical loss in identifying
an ordering with its positive cone, and at times it is convenient to do so.

For a field K, we define the set of sums of squares of elements of K:

Σ� = {x2
1 + . . . + x2

n | x1, . . . , xn ∈ K}

and also

Σ•
� = Σ� \ {0},

the set of nonzero sums of squares. It is easy to see that Σ•
� lies in the positive

cone of any ordering on K. On the other hand, −1 < 0, so in any ordered field −1
is not a sum of squares. That is, ordered fields are formally real. This is all quite
straightforward to prove. The converse, that any formally real field admits at least
one ordering, is a celebrated theorem of Artin-Schreier [FT, Thm. 92].

Let q = a1x
2
1 + . . . + anx

2
n be a nonsingular diagonal quadratic form. Suppose

that K admits an ordering < such that ai > 0 for all i. Then, again, q represents a
nontorsion element of W (K), i.e., every positive integer multiple [n]q is anisotropic,
since for all x = (x1, . . . , xn) ∈ Kn, q(x) = a1x

2
1 + . . . + anx

2
n ≥ 0, with equality

iff x = 0. (Of course, the same holds if all of the coefficients of q are negative
with respect to the ordering: in fancy language, anisotropy of forms is a similarity
invariant.)

If (K,<) is an ordered field and F is a subfield of K, then < restricts to an ordering
of F . So, for instance, the sum of n squares form is also anisotropic over Q, or any
number field which admits a real embedding.

2As a general rule, we will recall definitions and statements of results here, but for proofs the
reader is referred to loc. cit..
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Example: Let K = Q(
√

2), and consider the binary quadratic form q(x, y) =

(1 +
√

2)x2 + y2. This form is a nontorsion element of the Witt group of K becase

in the ordering <1 on K in which
√

2 > 0, all its coefficients are positive. Note
though that there is another ordering <2 on K– in which

√
2 < 0 – with respect to

which the form is “indefinite”: i.e., it has both positive and negative coefficients.

Exercise: Let K be a number field with r > 0 real embeddings ι1, . . . , ιr : K ↪→
R(recall that these correspond to real roots of any minimal polynomial P (t) for
K). Define the total signature Σ(q) of q to be the vector (σ(ι1(q)), . . . , σ(ιr(q)),
where σ(f) denotes the signature of a real quadratic form. Show that for any
s ∈ Zr, there exists a quadratic form q over K with total signature Σ(q) = s.
(Hint: Artin-Whaples approximation.)

The following result will be useful for us.

Theorem 23. a) For a nonzero element x of K, TFAE:
(i) x is positive with respect to every ordering on K.
(ii) x ∈ Σ�, i.e., x is a sum of squares.
b) It follows that if K is not formally real, Σ� = K×.

Proof. This is [FT, Cor. 94]. �
The following is an immediate consequence.

Corollary 24. For a field K, the following are equivalent:
(i) K admits a unique ordering.
(ii) The set Σ•

� of nonzero sums of squares satisfies axioms (PC3) and (PC4).

A formally real field is real-closed if it is formally real and admits no proper
formally real algebraic extensions. Here is a spectacular result [FT, Thm. 98].

Theorem 25. (Grand Artin-Schreier Theorem) The following are equivalent:
(i) K is formally real and admits no proper formally real algebraic extension.
(ii) K is formally real, every odd degree polynomial over K has a root in K, and
for each x ∈ K×, exactly one of x,−x is a square.
(iii) K is formally real and K(

√
−1) is algebraically closed.

(iv) The absolute Galois group of K is finite and nontrivial.

The implication (i) =⇒ (iii) shows that in a real-closed field, Σ•
� forms a positive

cone. It follows, by Corollary 24, that a real-closed field has a unique ordering, in
which the positive elements are precisely the squares.

In particular, R is a real closed field, and every real-closed field R possesses more
than a passing resemblance to R. (In fact, in the sense of model theory, any
real-closed field is elementarily equivalent to the real numbers. This is one of the
fundamental facts underpinning non-standard analysis.)

Proposition 26. Sylvester’s law of nullity holds over any real-closed field R. That
is, if R is real closed, and q is any nonsingular quadratic form over R, then there
exist uniquely determined non-negative integers r and s such that q ∼= [r]⟨1⟩ ⊕
[s]⟨−1⟩. It follows that W (R) ∼= Z.

Exercise: Prove Proposition 26.
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A real-closure of a formally real field K is an algebraic extension R of K which
is real-closed. Every formally real field admits a real-closure [FT, Prop. 101].
Warning: unlike in the case of algebraic closure, two real-closures R1 and R2 of
a formally real field K need not be isomorphic as K-algebras (or even as abstract
fields). However, the uniqueness can be recovered by working in the category of
ordered fields: suppose (K,<) is an ordered field. Then a real-closure of (K,<)
(i.e., as an ordered field) is a real-closed field R and a field embedding K ↪→ R such
that the unique ordering on R restricts to the given ordering < on K. We speak
of R as being a real-closure of K relative to the ordering <. We may also suppress
the < and speak of “the ordered field K”.

Theorem 27. (Existence and uniqueness of real-closures of ordered fields)
a) Every ordered field possesses a real-closure relative to the given ordering.
b) Let K1 and K2 be two ordered fields, and let R1 and R2 be real-closures of K1

and K2 relative to their given orderings. Let f : K1 → K2 be an isomorphism of
ordered fields. Then f extends uniquely to an order isomorphism F : R1 → R2.

Proof. This is [FT, Thm. TOBEADDED!]. �

Combining the previous two results, for any ordered field K we may define a sig-
nature map σ : W (K) → Z. Indeed, letting R be “the” real-closure of the ordered
field K, there is a natural ring homomorphism W (K) → W (R) and a canonical
isomorphism W (R) → Z, and we define σ to be the composite of these two maps.
Again, if σ(q) ̸= 0, then q is a nontorsion element of the Witt group of K.

Now let us take things one step further and bundle together the signatures over all
possible orderings into a single invariant. Namely, let X(K) be the set of all order-
ings of K. For q ∈ W (K), we define the total signature Σ(q) = (σP (q))P∈X(K),
where σP is the signature with respect to the ordering P . That is, Σ is a homo-
morphism of groups

Σ : W (K) →
∏

P∈X(K)

Z.

(Note: really the direct product, not the direct sum: consider for instance the total
signature of the unit quadratic form ⟨1⟩.)
Now we are ready to state a fantastic result.

Theorem 28. (Pfister) a) We have W (K)[tors] = W (K)[2∞].
b) (Local-global principle) We have an exact sequence of abelian groups

0 → W (K)[tors] → W (K)
Σ→

∏
P∈X(F )

Z.

In other words, part a) asserts that the only torsion in the Witt ring is 2-primary
torsion. Part b) asserts that a quadratic form has a hyperbolic multiple iff its total
signature is zero. In particular, W (K) is a torsion group iff K is not formally real.

Following [?], we prove these results by factoring them through the theory of
Pythagorean and Euclidean fields. Some of the results obtained along the way
are of independent interest.
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4.1. Euclidean and Pythagorean fields.

A field K is Euclidean if it is formally real and #K×/K×2 = 2.

Thus a real-closed field is Euclidean. A good way to think of a Euclidean field
is a field which behaves like a real-closed field as far as quadratic extensions are
concerned. (Indeed, since the name “Euclidean” is not especially meaningful to
me here, I contemplated replacing it with “quadratically real-closed”. But even ig-
noring the risks of introducing nonstandard terminology, the phrase “quadratically
real-closed” is a mouthful.)

A field K is Pythagorean if the sum of two squares is always a square. Equiva-
lently, Σ•

� = K×2.

Example: Quadratically closed fields and real-closed fields are Pythagorean. The
field of constructible real numbers is Pythagorean. A finite field is not Pythagorean.
Q is not Pythagorean.

We now have a string of easy facts about Euclidean and Pythagorean fields.

Proposition 29. In a Euclidean field, the two square classes are ±1.

Proof. Indeed, in any formally real field ±1 represent distinct square clases. �

Proposition 30. Let K be a Euclidean field.
a) K is Pythagorean with a unique ordering.
b) The signature map σ : W (K) → Z is an isomorphism.

Proof. Part a): if K is Euclidean, then it is formally real, so the sum of two
squares is always non-negative, and in a Euclidean field any non-negative element
is a square. That the ordering is unique follows from [FT, Lemma 90]. b) Once
again the proof of Sylvester’s Law of Nullity given in the case of K = R, goes
through verbatim for any Euclidean field, as we ask the reader to check. �

Lemma 31. Let K be a field of characteristic different from 2, a ∈ K× \K×2, and
L = K(

√
a). Then we have an exact sequence

1 → {K×2, aK×2} → K×/K×2 ι→ L×/L×2 N→ K×/K×2,

where ι is induced by the inclusion map K ↪→ L and N is induced by the norm map
from L to K: explicitly, x + ay 7→ x2 − ay2.

Proof. This is nothing else than the first three terms of inflation-restriction sequence
associated to the normal subgroup GalL of GalK and the GalK-module µ2 (i.e.,
Z/2Z with trivial action):

0 → H1(Gal(L/K), µ2)
inf→ H1(GalK , µ2)

res→ H1(GalL, µ2)Gal(L/K).

For a proof which avoids use of Galois cohomology at the expense of a more de-
tailed study of quadratic forms under quadratic field extensions, see [Lam05, Thm.
VII.3.8]. �

Here is an analogue of the Grand Artin-Schreier Theorem for Euclidean fields.
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Theorem 32. For a field K (of any characteristic), TFAE:
(i) K is Euclidean.
(ii) K is formally real and admits no formally real quadratic extension.
(iii)

√
−1 ̸∈ K and K(

√
−1) is quadratically closed.

(iv) K has characteristic different from 2 admits a quadratic extension which is
quadratically closed.

Proof. (ii) =⇒ (i): Let a ∈ K× \ K×2. By hypothesis, K(
√
a) is not formally

real. By [FT, Prop. 96] a is negative with respect to every ordering on K, so −a
is positive with respect to every ordering on K hence by [FT, Cor. 94] there exist
x1, . . . , xn ∈ K such that

−a = x2
1 + . . . + x2

n.

Out of all representations of −a as a sum of squares, we may take one with n
minimal: in particular xi ̸= 0 for all i. Suppose n ≥ 2. If x2

1 +x2
2 were not a square

in K, then as above we would have

−(x2
1 + x2

2) = y21 + . . . + y2m,

contradicting the formal reality of K. Therefore n = 1, i.e., a = −x2
1 ∈ −K×.

(i) =⇒ (iii): By definition of Euclidean,
√
−1 ̸∈ K. Now put L = K(

√
−1). Then,

since K is Pythagorean, the norm map from L to K – concretely x +
√
−1y ∈

L 7→ x2 + y2 ∈ K – induces the trivial homomorphism L×/L×2 → Ktimes/K×2. It
follows from Lemma 31 that L×/L×2 ∼= K×/±K×2, i.e., is trivial. [There should
be a proof of this independent of Lam’s result.]
(iii) =⇒ (iv) is immediate.
(iv) =⇒ (ii): Write L = K(

√
a). The norm map L×/L×2 → K×/K×2 has image

{x2 − ay2 | x, y ∈ K,x2 − ay2 ̸= 0}/K×2. Since L× = L×2, we conclude that
K×2 = {x2 − ay2 | x, y ∈ K,x2 − ay2 ̸= 0}. In particular, −a ∈ K×2. Thus
L = K(

√
−1) and the equality {x2 − ay2 | x, y ∈ K,x2 − ay2 ̸= 0}/K×2 asserts the

Pythagoreanness of K. Since K is Pythagorean, if it were not formally real then
−1 would be a square in K, contradiction. Also the exact sequence of Lemma 31
implies that K×/K×2 = {±1}, so L/K is the only quadratic extension of K. �
Proposition 33. A field K is Pythagorean iff for all x ∈ K, 1 + x2 ∈ K.

Exercise X.X: Prove Proposition 33.

Proposition 34. For a field K, TFAE:
(i) K is quadratically closed.
(ii) K is Pythagorean and is not formally real.

Proof. That (i) =⇒ (ii) is immediate from the definitions. Conversely, if K is
Pythagorean then Σ� = K×, whereas if K is not formally real, then by Theorem
23b) Σ� = K×. �
A class C of fields is closable if it satisfies the following two properties:

(CC1) For every field extension K, there exists an algebraic extension L/K such
that L ∈ C.
(CC2) Let {Li} be a family of subfields of a field C. Suppose that for all i, Li ∈ C.
Then K =

∩
i Li ∈ C.

Let C be a closable class of fields. Then, inside any algebraic closure K of K,
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K admits a C-closure: that is a subextension KC of K/K which lies in C and is
the unique minimal subextension with this property: namely the intersection of all
subextensions L/K which lie in C. The C-closure KC is well-defined up to K-algebra
isomorphism indepedent of the choice of algebraic closure K.

Proposition 35. The classes of quadratically closed fields and Pythagorean fields
are each closable. Therefore, inside a fixed algebraic closure K, K admits a unique
quadratic closure KQC and a Pythagorean closure KP . We have KP ⊂ KQC .

Proof. Since an algebraically closed field is both quadratically closed and Pythagorean,
both classes satisfy (C1). Now let {Li} be a family of subfields of a field C, and
put K =

∩
i Li. Let x ∈ K. Then ±

√
x lie in Li for all i, so ±

√
x ∈ K. Thus K

is quadratically closed. Moreover, 1 + x2 ∈ Li for all i, so 1 + x2 ∈ K. Thus K is
Pythagorean. �
Warning: Nothwithstanding the name, the real-closed fields are not a closable
class. They do not satisfy (C1) since a subfield of a real-closed field is formally
real. Moreover, they do not satisfy (C2): indeed, any algebraically closed field
of characteristic 0 admits infinitely many index 2 subfields, each of which is real-
closed by Artin-Schreier, but the intersection of any two of them has index 4 so
is not real-closed. The problem can be traced back to the condition that for all x
in a real-closed field, either x or −x is a square. If R1 and R2 are two real-closed
subfields of an algebraically closed field C and x ∈ R1 ∩ R2, then it may happen
that x (but not −x) is a square in R1 and that −x (but not x is a square in R2,
and thus neither x nor −x is a square in R1 ∩ R2. For very similar reasons, the
class of Euclidean fields is not closable.

The following important result characterizes fields with torsionfree Witt ring.

Theorem 36. a) A field K is Pythagorean and not formally real iff W (K) = Z/2Z.
b) A field K is Pythagorean and formally real iff W (K)[tors] = 0 iff W (K)[2] = 0.

Proof. a) By Proposition 34, a field is Pythagorean and not formally real iff it is
quadratically closed, whereas by Proposition 11, a field is quadratically closed iff
its Witt ring is Z/2Z.

Turning, to part b): Suppose first that K is Pythagorean and formally real. Let
q be an anistropic quadratic form over K. We must show that for all n ∈ Z+, [n]q
is also anisotropic. Indeed, write

q = a1t
2
1 + . . . + adt

2
d,

so
[n]q = a1(t211 + . . . + t21n) + . . . + ad(t2d1 + . . . + t2dn).

Thus, if x = (x11, . . . , xdn) is such that [n]q(x) = 0, we have

a1(x2
11 + . . . + x2

1n) + . . . + ad(x2
d1 + . . . + x2

dn) = 0.

Since K is Pythagorean, there exist y1, . . . , yd such that for all 1 ≤ i ≤ d,

x2
i1 + . . . + x2

in = y2i ,

and then
q(y) = a1y

2
1 + . . . + ady

2
d = 0.

Since q is anisotropic, y1 = . . . = yd = 0, and since K is formally real that forces
xij = 0 for all i, j.
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Obviously W (K)[tors] = 0 =⇒ W (K)[2] = 0.
Finally, assume that W (K)[2] = 0. For y ∈ K, put d = 1 + y2. Then the two

binary quadratic forms ⟨1, 1⟩ and ⟨d, d⟩ both represent d and have discriminant 1
so are isometric, i.e., [2]⟨1⟩ = [2]⟨d⟩ in W (K). But we are assuming there is no
2-torsion, so ⟨1⟩ = ⟨d⟩, i.e., d is a square. Thus K is Pythagorean. Applying part
a), K must be formally real. �

4.2. Proof of Pfister’s Local-Global Principle.

We will need the following Lemma, which provides a link between prime ideals
of W (K) and orderings on K.

Lemma 37. Let p be a prime ideal of W (K) which is not the fundamental ideal
I. Then

P := {a ∈ K | ⟨a⟩ ≡ 1 (mod p)}
is (the positive cone of) an ordering on K.

Proof. From the proof of Proposition 3 we have for all a ∈ K×, ⟨a⟩ ≡ ±1 (mod p).
Moreover, by Proposition 4, since p ̸= I, 2 ̸∈ p, so for all a ∈ K×, ⟨a⟩ is congruent
modulo p to exactly one of ±1.
(PC2): Clearly if ⟨a⟩ ≡ 1 (mod p) and ⟨b⟩ ≡ 1 (mod p), then ⟨ab⟩ ≡ 1 (mod p), so
P · P ⊂ P .
(PC1): Let a, b ∈ K× and put c = a + b. Then ⟨c⟩ ≡ 2 (mod p), so ⟨c⟩ ̸∈ p:
in particular, c ̸= 0. Now consider the two nonsingular binary quadratic forms
q1 = ⟨a, b⟩ and q2 = ⟨c⟩⟨1, ab⟩. Both q1 and q2 have discriminant ab and represent
the element c = a + b, so by X.X q1 ∼= q2. In particular they are equal elements of
W (K). Reducing this equality modulo p gives 2 ≡ 2⟨c⟩ (mod p). Since 2 ̸= 0 in
the domain W (K)/p, we may cancel to get ⟨c⟩ ≡ 1 (mod p), i.e., c ∈ P .
(PC3) This follows from the remark that for every a ∈ K×, either a ≡ 1 (mod p)
or −a ≡ 1 (mod p).
(PC4) Since 2 ̸∈ p, −1 ̸∈ P . But indeed, in the presence of (PC2) and (PC3), this
implies that P ∩ (−P ) = ∅. Indeed, if x ∈ P ∩ (−P ), then −1 = x · (−x) · ( 1

x )2 ∈ P ,
contradiction. �
Now we give the proof of Pfister’s Theorem (Theorem 28). We follow [Lam05,
§V III.3], the basic idea being to reduce to the Euclidean case.

Step 1: Suppose that K is Euclidean. In this case there is a unique ordering
and, by Proposition 30, the signature map Σ : W (K) → Z is an isomorphism.

Step 2: Suppose that K is not formally real. Then we must show that W (K) =
W (K)[2∞]. By Proposition 4 and Lemma 37, the only prime ideal of W (K) is the
fundamental ideal I. In other words, I is the intersection of all prime ideals of
W (K), which is the nilradical of W (K), i.e., the set of all nilpotent elements. In
particular, the element 2 ∈ I is nilpotent, so there exists r ∈ Z+ such that 2r = 0
in W (K). Thus every element of W (K) is 2-torsion.

Step 3: Now let K be an arbirary field of characteristic different from 2. Since∏
P∈X(K) Z is torsionfree, to prove Pfister’s theorem it is enough to show that if

q ∈ W (K) is not a 2-primary torsion element, then there exists an ordering P on K
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such that the P -signature of q is nonzero. An easy Zorn’s Lemma argument shows
that, among all algebraic extensions L of K such that q ∈ W (L) \W (L)[2∞], there
exists a maximal such extension. We claim that such an L is Euclidean. By Step 2
L is formally real. Suppose that there exists a L such that neither a nor −a lies in
L×2. By the maximality of L, q becomes 2-primary torsion in L(

√
a) and L(

√
−a),

so that for sufficiently large N , 2Nq is hyperbolic over both L(
√
a) and L(

√
−a).

Then by Corollary 22, 2 · 2Nq = 0 ∈ W (L), contradiction. Thus L is Euclidean
and the hypothesis that q is not 2-primary torsion in L means that it has nonzero
signature with respect to the unique ordering of L; this restricts to an ordering P
of K on which the signature is nonzero, qed.

5. Steinberg Symbols I

We follow [S, §2.12].

Let K be a field and B a 2-torsion abelian group, written multiplicatively. A
Steinberg symbol with values in B is a map σ : K× ×K× → B satisfying:

(SS1) For all x, y, z ∈ K×, σ(xy, z) = σ(x, z)σ(y, z) and σ(x, yz) = σ(x, y)σ(x, z);
(SS2) For all x ∈ K \ {0, 1}, σ(x, 1 − x) = 1.

Key Example: If K is a nondyadic CDVR or Q2, then the Hilbert symbol is a
Steinberg symbol.

Lemma 38. Let σ : K× → K× → B be a Steinberg symbol. For all x, y, z, w ∈ K×,
we have:
a) σ(xy2, zw2) = σ(x, z).
b) σ(1, x) = σ(x,−x) = 1.
c) σ(x, x) = σ(x,−1).
d) σ(x, y) = σ(y, x).

Proof. a) This follows from the fact that B is 2-torsion. b) Bimultiplicativity gives
σ(1, x) = σ(1, x)σ(1, x), hence σ(1, x) = 1. In particular σ(1,−1) = 1. If x ̸= 1,
then −x = (1 − x)(1 − x−1)−1, so

σ(x,−x) = σ(x, 1−x)σ(x, (1−x−1)−1) = σ(1, 1−x)σ(x, 1−x−1) = σ(x−1, 1−x−1) = 1.

c) 1 = σ(x,−x) = σ(x, x)σ(x,−1), so σ(x, x) = σ(x,−1).
d) We have

1 = σ(xy,−xy) = σ(x,−xy)σ(y,−xy) = σ(x,−x)σ(x, y)σ(y,−y)σ(y, x) = σ(x, y)σ(y, x).

�
Lemma 39. Let σ be a Steinberg symbol, and let x, y ∈ K×. Then:
a) If ⟨x, y⟩ is isotropic, σ(x, y) = 1.
b) The value σ(x, y) depends only on the isometry class of the binary form ⟨x, y⟩.

Proof. a) If ⟨x, y⟩ is isotropic, then there is z ∈ K× such that y = −xz2, so
σ(x, y) = σ(x,−xz2) = σ(x,−x)σ(x, z2) = 1.
b) If ⟨x, y⟩ ∼= ⟨z, w⟩, then there are α, β ∈ K such that xα2 + yβ2 = z. If β = 0,
then x ≡ z (mod K×2) and thus (e.g. by Witt Cancellation) y ≡ w (mod K×2),
so σ(x, y) = σ(z, w). Similarly if α = 0. If α and β are both nonzero, then

xα2z−1 + yβ2z−1 = 1
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with both terms nonzero, so by (SS2),

1 = σ(xα−1z−1, yβ2z−1) = σ(xz, yz) = σ(x, y)σ(z, xyz)

= σ(x, y)σ(z, zwz) = σ(x, y)σ(z, w).

�
Definition: Let ⟨a1, . . . , an⟩ be a diagonal quadratic form over K, and let σ be a
Steinberg symbol on K. We define the Hasse invariant

Hσ(a1, . . . , an) =
∏
i<j

σ(ai, aj).

Lemma 40. Let f and g be diagonal quadratic forms over K, and let σ be a
Steinberg symbol on K. Then

(4) Hσ(f ⊕ g) = Hσ(f)Hσ(g)σ(det f,det g).

Proof. . . . �
Proposition 41. (Isometry Invariance of Hσ) Let a1, . . . , an, b1, . . . , bn ∈ K×, and
suppose that ⟨a1, . . . , an⟩ = ⟨b1, . . . , bn⟩. Then for any Steinberg symbol σ, we have
Hσ(a1, . . . , an) = Hσ(b1, . . . , bn).

Proof. By Witt’s Chain Equivalence Theorem [?, Thm. 28], we may assume that
⟨a1, . . . , an⟩ and ⟨b1, . . . , bn⟩ are simply equivalent. In fact, from the symmetry of
σ and the definition of Hσ we see that Hσ(a1, . . . , an) is invariant under permuta-
tions of a1, . . . , an. Thus it suffices to assume that ⟨a3, . . . , an⟩ = ⟨b3, . . . , bn⟩ and
⟨a1, a2⟩ ∼= ⟨b1, b2⟩; in particular a1a2 ≡ b1b2 (mod K×2). By Lemmas 39 and 40,

Hσ(a1, . . . , an) = Hσ(a1, a2)Hσ(a3, . . . , an)σ(a1a2, a3 · · · an)

= Hσ(b1, b2)Hσ(b3, . . . , bn)σ(b1, b2, b3 · · · bn) = Hσ(b1, . . . , bn).

�
For many purposes, the following modification of the Hasse invariant Hσ proves
slightly more natural: for a Steinberg symbol σ and an n-ary quadratic form q, we
define the Witt invariant cσ(q) as follows:

Hσ(q), n ≡ 1, 2 (mod 8),

Hσ(q)σ(−1,−det q), n ≡ 3, 4 (mod 8),

Hσ(q)σ(−1,−1), n ≡ 5, 6 (mod 8),

Hσ(q)σ(−1,det q), n ≡ 7, 8 (mod 8).

Example: Let q =
⊕n

i=1 H. Then cσ(q) = 1.

Proposition 42. The Witt invariant of a quadratic form depends only on its sim-
ilarity class.

Proof. By direct computation. . . �
Let σ : K× ×K× → B be a Steinberg symbol. We define Hσ(K) as the set

Z/2Z×K×/K×2 ×B

endowed with the following group law:

(0, x, c)(0, x′, c′) = (0, xx′, cc′σ(x, x′)).

(0, x, c)(1, x′, c′) = (1, xx′, cc′σ(x,−x′)).
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(1, x, c)(0, x′, c′) = (1, xx′, cc′σ(−x, x′)).

(1, x, c)(1, x′, c′) = (0, xx′, cc′σ(x, x′)).

Theorem 43. a) Hσ(K) is a commutative group, with identity element (0, 1, 1)
and inverses as follows:

(0, x, c)−1 = (0, x, cσ(x, x)), (1, x, c)−1 = (1,−x, c).

b) The map B → Hσ(K) given by c 7→ (0, 1, c) is an injective group homomorphism.
The quotient Hσ(K)/B is isomorphic to the extended square class group Q(K).

c) The map Ŵ (K) → Hσ(K) obtained by sending a quadratic form to (dim(q)
(mod 2), d±(q), cσ(q)) is a homomorphism of groups which factors through W (K).

Theorem 44. (Milnor) The map K× ×K× → I2/I3 given by

(x, y) 7→ ⟨1,−x,−y, xy⟩ + I3

is a universal Steinberg symbol.
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