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Here is one easy method for constructing Steinberg symbols. Recall
that a discrete valuation v on a field F is a homomorphism from the
muitiplicative group F° onto the additive group of integers, satisfying
v(x +y) > Min(v(x), v(y)). The associated valuation ring A C F consists
of all x with v(x) >0, together with the zero element of F. There is a
unique maximal ideal B C A; and the quotient A/ is called the residue
class field F.

LEMMA 11.5. The formula d(x, y) = (=1)VENVIVE)yv () nog g
defines a continuous Steinberg symbol d, on F with values
in the discrete group F° = (A/B)".

(Compare Serre, Corps locaux, p. 217.) This dv is called the tame
symbol associated with the valuation v. Evidently d, gives rise to a

homomorphism from K,F onto the group F* - KI(E).

Proof of 11.5. The element ﬂv(y)/yv(x) is a unit of A, since both
V) and yV®) have the same image (namely v(x)v(y)) under v. It is
clear that d, is bimultiplicative, and continuous in the v-topology. The
proof that d (1—x, x) = 1 will be divided into several cases. If v(x) >0,

then x ¢, hence l-x=1mod P and v(l1-x) =0, so that
(—1) A=V )V (1=%) - (1_x)¥(X) = 1 mod .

The proof when v(1-x) >0 is similar. Now suppose that v(x) < 0. Then
x~! ¢PB, hence the quotient
(1—x)/x = =1 +x~! = —1 mod P

is a unit. Therefore v(1—x) = v(x), and

(1—x)V®)x¥1=%) _ (%) /)V® = (1)) mod B,

Multiplying by the sign (~1)V¢1=%)V(X). (_1y¥(X)  we obtain 1 mod B,
as required. The case v(1-x)< 0 is similar. Since the remaining case

v(x) = v(1-x) = 0 is trivial, this proves 11.5. =
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Gauss and Quadratic Reciprocity
To illustrate these concepts let us look at the field Q of rational num-
bers. What Steinberg symbols c(x,y} can be defined on the field Q?

For any prime p, the p-adic valuation v on Q gives rise to a Stein-

berg symbol dvp(x,y) with values in the cy?:lic group (Z/pZ)° of order
p—1. If p is odd we will denote this symbol hriefly by (x,y)p, and its
target group (Z/pZ)" by Ap.

For p = 2 this construction is useless. However a 2-adic symbol
(x,y)2 can be defined as follows. Any non-zero rational can be written
uniquely as a product of the form ﬂjsku, where k equals 0 or 1, and

where u is a quotient of integers congruent to 1 modulo 8. Now if

x = (-1i2isku, y = (<1)l2JsKy,
then set
(X,y)2 = (_1)II+]K+kJ‘
Thus the target group A, is the cyclic group }£ 1}, The verification that

this is a well defined Steinberg symbol will be left as an exercise.

REMARK. The following assertion may help to motivate the definition

Or (KnY)p-

For any prime p suppose that a Steinberg symbol c:Q"x0Q" - A,
with values in a Hausdorll topological group A, Is continuous
with respect to the p-adic topology on Q°. Then there is one
and only one homomorphism from Ap to A which carries the

symbol (x,y)p to c(x,y) for every x and vy,

Briefly speaking, (x,y)p is the ‘‘universal continuous Steinberg symbol”’
for the p-adic topology on Q. This statement is a special case of
a much more general theorem, due to Calvin Moore, which is proved in the
Appendix.

Here is an outline of the proof. Let p"™ be any prime power which is

greater than 2. Then the congruence
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(4) (1-rp™P = 1—rp™!  (mod p™*?)

follows easily from the binomial theorem. Now suppose that p is odd, and
that r is prime to p. Let u, denote any quotient of the form s/t with
s=t=1 (mod p). Using (4), we note that u, can be approximated arbi-
trarily closely, in the p-adic topology, by a power of 1-rp. In fact we can
first choose i so that
(l—rp)it =s (mod p?),

then choose j so that

(1-rp)i+jpt =s (mod p3),
and so on.

Since c(rp, (1—rp)i) =1 for every exponent i, it follows by continuity
that c(rp, u;) =1 for every such u, = s/t. But the entire multiplicative
group Q° is generated by such products rp, with r relatively prime to
the fixed prime p. Thus we have proved that
5) cx,u;) =1 forall x in Q"

If r and 1’ denote integers prime to p, then it follows immediately
from (5) that c(r,r") depends only on the residue classes of r and 1’
modulo p., But, applying Steinberg’s theorem that every symbol on a finite
field must be trivial (§9.9), this proves that
6) c(r,r’) = 1.

Let A denote a primitive root modulo p. Thenany x and y in Q°
can be written more or less uniquely in the form
X = pi)\jul, y = plz\-]u;;
and it follows that
cxy) = c@,p)le(,py' 1.
Since the equalities
c,pP! = cOWP~Lp) = 1
and

c(p.p) = c(=1,p) = c(\,p)P-1)/2

follow from (5), the proof for p odd can now easily be completed.
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For p =2 asimilar argument shows that every number u which can
be expressed as a quotient s/t with s =t =1 (mod 8) can be approxi-
mated arbitrarily closely, in the 2-adic topology, by a power of 9. Using
the equalities

c(9,-1) = ¢(3,-1)2 = c(3,(-1)?) = 1,
c(9,-2) = c(3,-2)> = 1, and
c(9,3) = c(-3,3)% = 1,

it follows by continuity that
c(u,-1) = ¢(v,-2) = c(u,3) = 1

for every such u. Since -1, -2, and 3 generate a subgroup of Q* which
is everywhere dense, this proves that
v} c(y,x) =1 forall x.

As an example, taking u = -=5/3, it follows that

c(5,%x) = c(-3,x)
Taking x = 4, we see that c(5,4) =1, hence ¢(5,-1) = c(5,—4) =1, and
therefore
(8) <(5,5) = c(5,-1) = 1.
Similarly the equation c(-5,-1) = ¢(3,x) for x = =2 implies that ¢(-5,~2) =
1, and hence
9) c(5,2) = ¢(-1,-1).
Now combining (7), (8), and (9) with the evident equation ©(2,2) = ¢(2,-1) =
1, we see that
c((-l)i2j5ku, (_1)[2]51(“,) _ c(—l,ul)il + jK + k];

which clearly completes the proof.m

Using these Steinberg symbols (x,y)p, we are now ready to compute

the group K,Q.

THEOREM 11.6 (Tate). The group K,Q is canonically isomor-
phic to the direct sum A2$A3$A5@.... where Az is the cyclic
group {x 1}, and where Ap =(Z/pZy* for p odd.

In fact the isomorphism will be given by the correspondence
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fx,ylm (xy), e (x,y); e (xy)e..

forall x and y in Q"

Tate remarks that his proof of this theorem is lifted directly from the
argument which was used by Gauss in his first proof of the quadratic re-
ciprocity law. (Compare Gauss, Disquisiiiones Arithmeticae, Yale Univ,
Press 1966, pp. 84-98.)

To start the proof, for each positive integer m let L, denote the sub-
group of K,Q generated by all symbols {x,y} where x and y are in-
tegers of absolute value < m. Then cleasly

LCLELE...

with union K,Q. Note that L, =Lg if m is not a prime number.

LEMMA 11.7. For each prime p the quotient group Lp/Lp-l

is cyclic of order p-1.

In particular the quotient L,/L; is trivial. Assuming this lemma for
the moment, the proof proceeds easily as follows.

For each prime p the correspondence lx,ylw (x,y)p defines a homo-
morphism from K,Q to Ap' If p is odd, it is clear that this homomor-

phism annihilates L but maps L

-1

Hence it induces an [ijsomorphism Lp/ Ep_l = Ap. On the other hand, for
p = 2, this homomorphism maps the generator {—1,-1} of L, onto the
element (-1,-1), = -1, and hence induces an isomorphism from L; =L,
to A,. An easy induction now shows that, for each prime p, the corre-
spondence

Xyl (y), oxy); 2.0 (x,y)p

maps the group L. isomorphically onto the direct sum Aye Asm...eaAp.

P
Taking the direct limit as p - o, the Theorem follows.

To prove Lemma 11.7, consider the correspondence
¢ : (Z/pZ) - Lp/Lp—l
defined by the formula
x » {x,pl modulo Lo

onto the cyclic group A, = (Z/pZ)".
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Here x is to vary over all non-zero integers of absolute value less than

p. To show that ¢ is well defined, and a homomorphism, we suppose that
xy = z mod p,

where %,y and z are all non-zero integers of absolute value less than

p. Then xy = z+¢pr with |pt] < [xy| + |z| < (p=1)° + p=1, hence |r] < p.

N
ow 1 = z/xy + pt/xy

s0 1 = lz/xy,pt/xy} = lz/xy,pl mod L _,.
Therefore .

{z,p} = lxy,p! mod Lo_1s

so that ¢ is a homomorphism, and (taking y = 1) ¢ is well defined.
To prove that ¢ is surjective, note that LP is generated by the sym-

bols Ix,tpl, {*p,x}, and l#p,+p}, together with L Hence the identi-

p-1°
ti
1es {=p,—p! = lp,p} =¢(~1) mod Loy
[iP:xl_l = fx,2plap(x) mod L__.,
p-1
and

l_P;P! = Ipr_pl—'lr

show that ¢ is indeed surjective, This proves that LP/L has at

p-1
most p—1 elements. Since we already know, using the symbol (x,y)p,

that I..p/Lp_1 has at least p—1 elements, this completes the proof. m
Another way of stating our conclusion is the following.

COROLLARY 11.8. Given any Steinberg symbol c(x,y) on the
rational numbers, with values in an abelian group A, there
exist unique homomorphisms
¢p: Ap - A
so that
etiy) =[] ¢pcy)y),

the product being taken over all prime numbers p.

In this formulation, the result could have been proved directly, without

ever mentioni .
tioning K,

To illustrate this corollary, consider the local symbol (x,y),,, de-
fined by
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#1 if x>0 or vy > 0
(x,y),, =

-1 if x,y<0,
which is associated with the embedding of the rational numbers in the real
numbers. (Compare §8.4.) This is the ‘‘universal continuous Steinberg
symbol’’ for the archimedean topology of Q. According to 11.8 there must
be a relation of the form

@y = [L8pnp).

In fact one has the following.

QUADRATIC RECIPROCITY LAW. The symbol (x,y) Is
equal to the product, over all primes p, of ((x,y))p, where
the Hilbert symbol ((x,y))p = +1 is defined to be (J.:,y)2

if p=2 and is defined by the condition

@), = (xy)p®12 mod p
if p is odd.

Proof. It is clear from the Corollary that there exists some relation of
the form .
@) = L@y, P,
where the exponents £,,€4,Eg,... must be either 0 or 1. Taking
x =y = —1 we see that the exponent £, must be 1. If p is a prime of
the form 8kx3, then since
@p. =1, @p), = -1,
we must have

E
(2.P))p P - _1:

so that Ep cannot be zero. Similarly, if p is a prime of the form 8k+7

(or 8k+3), then the equations
~Lp), =1 (-Lp), = -1

imply that £p cannot be zero.

Thete remains only the case of a prime of the form 8k+l. Following

Gauss we prove the following.
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LEMMA 11.9. If p is a prime of the form Bk+l, then there

exists a prime q <\/p so that p is not a quadratic residue

modulo q.

(Examples such as 109 = 22 mod 3-5-7 show that the hypothesis

p=1mod 8 is essential, at least for small values of p.)

Proof (following Tate). Consider the product

N -e=1? p-3% p-5%  p-m?
4 4 4 4

Here m should be the largest odd number less than \/p, so that

m? < p<{m 1-2)2. Then for each factor (p-iz)/ 4 of the product N we
have

.2 2 .2 . .
- p—i (m+2)"—i® _ m+2+i | m+2—i
ts55-% i~ 32 T2 -
Taking the product, for i =1,3,5,...,m, this yields
0<N< (m+l) .

Now suppose that p is a quadratic residue modulo every prime less

than \/p. Then we will prove that
N = 0 mod (m+1) ,

thus yielding a contradiction. We will use the notation [£] for the largest
integer < £,

First note, following Gauss, that in order to prove a congruence of the
form a a,...a) = 0 mod n! it suffices to prove, for each prime power
g® < n, that at least [n/q5] of the factors a; are divisible by q5. The

s
congruence then follows easily, using the identity n!=1-'[qs<n q[n/ q ]_

Thus in our case, for each prime power q° < m+l, we must prove that
at least [(m+1)/q®] of the numbers (p-i®)/4 are divisible by 5. In
other words we must show that the congruence

p = i mod 4¢°
has at least [(m+1)/qg] solutions in the interval 0 < i< m+l.

First we will show that p is indeed a quadratic residue modulo 4g°.

Since p = 1 mod 8, it is known that p is a quadratic residue moduio any

power of 2. So it suffices to consider the case g odd, hence ¢ £ m+l.
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Then :
g<q®sm<yp,

so p is a residue modulo g; and it follows easily that p is a residue

modulo 4q5.

Thus the congruence p = i mod 4q® has at least one solution i. Now,
changing the sign of i if necessary, and adding a multiple of 2q°, we ob-
tain a solution i, which lies in the interval 0<ij < q5. (This is possible
since (i+2q5)? = i% mod 49%.) Similarly we obtain a solution 2¢°—ij lying
between q and 2q5, a solution i+ 2q° between 2q° and 3g°, and
so on. Thus, for each positive n, there exist at least [n/q%] solutions
between 0 and n. Taking n = ms:l, this completes the proof of Lemma

11.9.m

The proof of the quadratic reciprocity law, following Gauss and Tate,
can now be completed as follows. Suppose that p is a non-residue modulo
q, where g<p and p=1 mod 8 We may suppose inductively that the
q eauals 1. Then (p,q), = ((p.qM), = 1 but ((p,a))y = ~1. So

15 .
it follows that ((p,q))p P - _1, and hence that £p #£ 0. This completes

exponent £

the proof. m

Remark. Let F(x) denote the field of rational functions
f = (agxs.. .+aﬂ)/(b0xm+. ctby)

in one variable over F. It will be convenient to set

deg f = n—m, lead coef f = ay/by.

The technique used above to compute K,Q can also be applied to K,F(x),
and yields a split exact sequence
1 - K,F » K,F() ~ @ (Flxl/p)” - 1,
where p ranges over all non-zero prime ideals in the polynomial ring. (To
prove that the sequence splits one uses a symbol such as o(f,g) =
|lead coef f, lead coef gl with values in K,F.)
Just as in the rational number case, the proof is based on the symbols

(f,g)p associated with the various p-adic valuations on F(x). And just
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as in the rational case, one valuation is conspicuously absent from the list,
In this case it is the valuation

v (6) = —deg()
associated with the point at infinity. Hence, just as before, we can derive

a formula which expresses the corresponding Steinberg symbol

(f.g),, = (_Ddeg f deg E(lead coef g)tleg f/(ll;-.au:i coef )9e€ B
in terms of the (f,g)p. The appropriate formula, due to Weil, is

-1
e = H norm (f,g)p .
taking the product over all non-zero prime ideals p, and using the norm
homomorphism from (F[x]/p)" to F°. (Compare Bass, Algebraic K-Theory,

p. 333.) If f and g are relatively prime polynomials, then the right side
of this equation can be written as

II &/ I] ew.
g(§)=0 f(p=0
where £ and 7 range over the algebraic closure of F, and n-fold zeros

are to be counted n times.

Uncountable Fields

To conclude this section we will give one more application of Lemma

11.5.

THEOREM 11.10. If a field F has uncountably many elements,

then K,F is uncountable also.

Proof. Let ICTF be the prime field, and let X = {x,} be a maximal
set of algebraically independent elements over II. Thus F is an alge-
braic extension of the uncountable function field TI(X). Choosing one of
the indeterminates xg ¢ X and letting X’= X — ixgl, we obtain a dis-
crete valuation on [K(X), with residue class field TI(X"), by considering
the place f(xo) + f(0). (Here we are thinking of f(xy) as a polynomial in
the indeterminate xq with coefficients in II(X").) Extend this place to

a place on F with values in the algebraic closure of II(X"). (Compare
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Lang, Introduction to Algebraic Geometry, p. 8.) Then for every finite ex-
tension E of II(X) within F we obtain a discrete valuationon E whose
residue class field E is a finite extension of T(X"). Map K,E to E’

by 11.5. If E; is an extension field of E with ramification index r,

then it is easily verified that the following diagram is commutative,

K,E ——— K,E;

e r b1

E* m———— E,
where r denotes the homomorphism e+ e’. In order to make this bottom
homomorphism injective, we will divide out by the countable subgroup con-

sisting of all roots of unity in E’. Thus we obtain

K,E ——— K;E,

E*®/(roots of unity) - E'I/(roots of unity),

where the bottom arrow is now an injection.
Passing to the direct limit as E varies over all finite extensions of

I(X) in F, we thus obtain a homomorphism from K,F onto a direct limit
group which contains E*/(roots of unity) for all such E. This proves that

the group K, F is necessarily uncountable.

R e

§12. Proof of Matsumoto’s Theorem

Let ¢ be a Steinberg symbol on the field F with values in a multipli-
cative abelian group A. (Compare §11.3.) We will use ¢ to construct a
central extension

1+5A-G-SL(nF)-1.
Here n could be any positive integer, but for convenience we assume that
n > 3. The extension will be constructed first over the subgroup D of
diagonal matrices, then over the larger group M of monomial matrices, and
finally over the eatire group SL(n,F).

To construct the preliminary extension

l1+A-HaDal,
let H be the set DxA with the following product opetation. If
d= diag(ul,...,un) and d’= diag(vl,...,vn) then
) @72 = (dsaa’ [T etu;,v;).
2]
It is easily verified that this product is associative, and hence makes H
into a group. Let
¢:H-D
be the projection to the first factor. Thus ¢ is a homomorphism with
kernel IxA contained in the center of H. We will identify this kernel with

A. Commutators in H can be computed just as in §8.3;

LEMMA 12.1. If (h) = diag(u,,...,u;) and (k) = diag(v,...,vp),
then hkh~1k~! js equal to the product

cuy,v;) c(uy,vy) ... c(un,vn).

Proof. This follows easily, using the skew-symmetry of c and the

equation u;..u, = vievg=1.8
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