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Our story begins with a field F . We may form the free associative algebra FreeAlg(F×)
generated by the nonzero elements F× = Fr{0} of F . This is the algebra whose underlying
Z-module is free on (possibly empty) words in the alphabet {[a] | a ∈ F×}.1 Multiplication
of words is given by concatenation, and the rest of the algebra structure is as it must be
for associativity and distributivity to hold. Note that the empty word plays the role of the
multiplicative identity, thus we denote it by 1.

Example 1. If F = F2, the field with 2 elements, then F× = {1} and every word in {[1]} is
of the form [1]n for some n ∈ N. Thus FreeAlg(F×) is isomorphic to the polynomial algebra
Z[x] via the unique ring homomorphism taking x 7→ [1].

Remark 2. In general, free associative algebras are not polynomial algebras. When manu-
ally manipulating them, it is probably best to think of their elements as “non-commutative
polynomials.”2

There is a natural grading on FreeAlg(F×) given by word length so that, for instance,
the degree (i.e. grading) of 2[a][b][c] − 5[d] is 3 and the degree of −17[e]6[f ] + 3[g][h] is 7.
Let FreeAlgn(F×) denote elements of FreeAlg(F×) which are homogeneous of degree n and
note that

FreeAlg(F×) ∼=
⊕
n∈N

FreeAlgn(F×)

as a Z-module. In order to remind us that FreeAlg(F×) is graded, we will denote it

FreeAlg∗(F
×).

Here the ∗ is a wildcard which takes values in N.
Having formed FreeAlg∗(F

×), it is only natural to reincorporate some of the arithmetic
structure of the field F by declaring that

[ab] = [a] + [b].

What may initially seem less natural is the Steinberg relation

[a][1− a] = 0 for a ∈ F× r {1}.

Temporarily postponing a justification of this relation, let us rush ahead and give one of
our primary definitions.

Date: July 6, 2015.
1We could also take words in F× without the decorating square brackets, but this would make it hard

to distinguish between multiplication in F× and multiplication in the algebra.
2Note, though, that there is more structure lurking in the background. The assignment if a set S to

FreeAlg(S) is in fact a functor which is left adjoint to the forgetful functor taking a ring (associative and
unital) to its underlying set of elements. The reader should check that there is a (natural) bijection between

ring homomorphisms FreeAlg(S)→ R and functions S → R.
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Definition 3. Let F be a field and define

I ..= ([ab]− [a]− [b] | a, b ∈ F×),

J ..= ([a][1− a] | a ∈ F× r {1})

to be (homogeneous) ideals in FreeAlg∗(F
×). The Milnor K-theory of a field F is the graded

ring
KM
∗ (F ) ..= FreeAlg∗(F

×)/(I + J)

Abuse of notation 4. We will drop the coset notation +(I + J) from our notation for
elements of KM

∗ (F ). Henceforward, [a] (with a ∈ F ) will refer to the image of [a] in KM
∗ (F ).

Furthermore, products [a1][a2] · · · [an] will be denoted [a1, a2, . . . , an].

Remark 5. The quotient
FreeAlg(F×)/I

is also known as the tensor algebra on the abelian group F×. Milnor’s original definition of
Milnor K-theory treats KM

∗ (F ) as a quotient of the tensor algebra on F×. Since Milnor-
Witt K-theory appears as the quotient of a free algebra, we have chosen this as our starting
place for Milnor K-theory as well.

Remark 6. Since I and J are homogeneous, KM
∗ (F ) inherits its grading from FreeAlg∗(F

×).
For n ∈ N, KM

n (F ) denotes the abelian group of homogeneous elements of degree n.

Proposition 7. For any field F , KM
0 (F ) = Z and the assignment a 7→ [a] is an isomorphism

of abelian groups F× → KM
1 (F ). In particular, [1] = 0.

Proof. The statement about KM
0 (F ) is obvious. In KM

1 (F ), we have that [ab] = [a] + [b], so
the assignment is a homomorphism. Bijectivity is clear.

To see that [1] = 0 completely explicitly, note that

[1] = [1 · 1] = [1] + [1]

and subtract [1] from both sides. �

Example 8. We have KM
∗ (F2) ∼= Z, concentrated in degree 0.

Example 9. In fact, for any finite field Fq of order q, KM
∗ (Fq) is concentrated in degrees 0

and 1 with KM
1 (Fq) cyclic of order q − 1. See [2, Example V.6.14] for details (but be wary

that the group law in his K2F is written multiplicatively).

We now consider the job of Milnor K-theory, or more precisely the universal property
of KM

2 (F ). Recall that KM
2 (F ) is the quotient of F× ⊗Z F

× by the Steinberg relation
(a⊗ (1− a) | a ∈ F× r {1}). Since the job of the tensor product of R-modules M ⊗R N is
to to turn bilinear forms M ×N → L into module homomorphisms M ⊗R N → L, we see
that KM

2 (F ) similarly encodes a certain type of form on F× × F×.

Definition 10. A symbol (or Steinberg symbol) on a field F with values in an abelian group
G (say with group law written multiplicatively) is a function ( , ) : F××F× → G such that
for all a, b, c ∈ F×,

(i) (ab, c) = (a, c)(b, c) and (a, bc) = (a, b)(a, c), and
(ii) if a+ b = 1, then (a, b) = 1.

Remark 11. Condition (i) says that ( , ) is bimultiplicative (in analogy with bilinearity),
and condition (ii) is exactly the Steinberg relation. As such, we immediately have the
following proposition.
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Proposition 12. Given any symbol ( , ) : F× × F× → G, there exists a unique homomor-
phism KM

2 (F )→ G such that

F× × F×
( , )

##��
KM

2 (F ) // G

where the vertical map takes (a, b) to [a, b].

Symbols arise naturally in several number theoretic contexts. The simplest one to define
is the tame symbol ( , )v of a field F with discrete valuation v. A discrete valuation is a
homomorphism v : F× → Z satisfying v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ F×. The ring
O = {a ∈ F | v(a) ≥ 0} ∪ {0} is called the valuation ring of (F, v); it contains a maximal
ideal m consisting of 0 and all elements with positive valuation. The quotient F ..= O/m is
called the residue field of (F, v).3

Given a discretely valued field (F, v) we define

(a, b)v ..= (−1)v(a)v(b)
av(b)

bv(a)
mod m,

a well-defined element of F
×

since ±av(b)

bv(a) is clearly a unit in O.

Lemma 13. For any discretely valued field (F, v), the tame symbol ( , )v is a Steinberg
symbol.

Before proving the lemma, let us consider the example of the rational numbers equipped
with the p-adic valuation vp. Writing α ∈ Q in the form pr a

b where r ∈ Z and p - a, b, we
have

vp(α) ..= r.

In this case, O = Z(p), the ring of p-local integers, i.e., rational numbers for which the

denominator is not divisible by p. Moreover, m = pZ(p), so Q = Fp. Write ( , )p for ( , )vp
.

A simple computation gives that(
pr
a

b
, ps

c

d

)
p

= (−1)rs
asdr

bscr
mod pZ(p)

where p - a, b, c, d. It is then easy to check manually that ( , )p is bimultiplicative and
satisfies the Steinberg relation.

Proof of Lemma 13. Bimultiplicativity is clear. To prove that the Steinberg relation (a, 1−
a)v = 1 holds, first consider the case that v(a) > 0, i.e., a ∈ m. Then 1−a ≡ 1 mod m and
hence v(1− a) = 0. Thus

(−1)v(a)v(1−a)
av(1−a)

(1− a)v(a)
=

1

(1− a)v(a)
≡ 1 mod m,

as desired. A similar argument works if v(1− a) > 0.
Now suppose v(a) < 0 so that 1/a ∈ m. Since (1 − a)/a = −1 + 1/a ≡ −1 mod m is a

unit in F , we learn that v(1− a) = v(a). Moreover,

av(1−a)

(1− a)v(a)
=

(
a

1− a

)v(a)

≡ (−1)v(a) mod m.

3If unfamiliar with discrete valuations, you should check all of these statements or, alternatively, read

Cassels’s brilliant book [1].
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Multiplying by (−1)v(a)v(1−a) = (−1)v(a), we see that (a, 1− a)v = 1 in this case as well. A
similar argument works if v(1− a) < 0.

There is only one remaining case, v(a) = v(1− a) = 0, which is trivial. �

Of course, the tame symbol is fairly bland when p = 2. We rectify this by redefining
( , )2 as follows. Note that any rational number has a unique expression as ±2j5kc/d where
j ∈ Z, k = 0 or 1, and both c and d are integers congruent to 1 mod 8. If a = (−1)i2j5kc/d
and b = (−1)I2J5Kc′/d′, define

(a, b)2 ..= (−1)iI+jK+kJ .

The reader may check that this defines a Steinberg symbol on Q with values in {±1}.

Theorem 14 (Tate). The assignment

KM
2 (Q) −→ {±1} ⊕ F3

× ⊕ F5
× ⊕ F7

× ⊕ · · ·
[a, b] 7−→ ((a, b)2, (a, b)3, (a, b)5, (a, b)7, . . .)

is a well-defined isomorphism.

We will not prove this theorem here, but rather refer the reader to Milnor [4, pp.101–103].
Let Ap = Fp

× if p > 2, and let A2 = {±1}. Since all symbols on Q factor through
KM

2 (Q), we learn that for any symbol ( , ) on Q with values in G, there exist unique
homomorphisms ϕp : Ap → G such that

(a, b) =
∏

ϕp(a, b)p.

In particular, we may consider the symbol

(a, b)∞ =

{
1 if a > 0 or b > 0,

−1 if a, b < 0,

for which there are unique ϕp : Ap → {±1} such that (a, b)∞ =
∏
ϕp(a, b)p.

Definition 15. Let p be a rational prime or ∞. The Hilbert symbol L , Mp is defined to be
( , )p if p = 2 or ∞; otherwise, La, bMp in the unique value in {±1} such that

La, bMp ≡ (a, b)(p−1)/2p mod p.

The observation (a, b)∞ =
∏
ϕp(a, b)p now clearly implies that there exists εp ∈ {0, 1}

such that for all a, b ∈ Q×, La, bM∞ =
∏

La, bMεpp . In fact, all of the εp = 1, a statement which
is known as Hilbert reciprocity.

Theorem 16 (Hilbert reciprocity). For all a, b ∈ Q×,

1 =
∏

La, bMp

where the product ranges over all rational primes and ∞.

The proof is a case-wise analysis which runs through the potential congruence classes of
p mod 8. Primes congruent to 1 mod 8 are the trickiest, and that argument relies on a
theorem of Gauss.4 Again, see Milnor [4, pp.104–106].

4If a prime p ≡ 1 mod 8, then there exists a prime q <
√
p such that p is not a quadratic residue mod q.
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Interpretation of symbols. As presented, the tame and Hilbert symbols discussed here
probably seem horribly ad hoc. Yet Hilbert reciprocity is much more than a flashy nu-
meroligical trick. In fact, this reciprocity law implies classical quadratic reciprocity and
forms the basis for Hilbert’s ninth problem, a program of inquiry which eventually led to
class field theory [3, Preface].

The Hilbert symbols derive their power from a connection with quadratic forms. The
definitions given above are mere formulas which hide conceptual beauty.

Very briefly, given a field F and a, b ∈ F×, let qa,b denote the quadratic form

qa,b(x, y, z) = ax2 + by2 − z2.

We declare

(a, b)F =

{
1 if qa,b is isotropic,

−1 if qa,b is anisotropic.

An n-dimensional quadratic form q is isotropic if there exists x ∈ Fn r {0} such that
q(x) = 0; otherwise, q is anisotropic.5 If F is a local field, ( , )F is a Steinberg symbol.6 In
fact, if F is the field of p-adic rationals F = Qp, then ( , )Qp

= L , Mp. If F = R = Q∞, then
( , )R = L , M∞.

Now Q is the prime field (and thus a subfield) of all the Qp (including Q∞). Thus Hilbert
reciprocity relays (at least) two important facts: First, if a, b ∈ Q×, then for almost every
p, qa,b is isotropic as a form over Qp. Second, the (an)isotropicity of qa,b over all but one
Qp determines the (an)isotropicity of qa,b over the mystery Qp.

1. Exercises

Exercise 17. Use the identity −a = (1− a)/(1− 1/a) to prove that [a,−a] = 0 ∈ KM
2 (F )

for any a ∈ F .

Exercise 18. Show that for every x ∈ KM
m (F ) and every y ∈ KM

n (F ),

xy = (−1)mnyx.

Hint : It suffices to consider the case x = [a], y = [b]. Use the previous exercise to add two
clever 0’s to [a, b] + [b, a].

Exercise 19. Prove that [a, a] = [a,−1] for all a ∈ F .

Exercise 20. Use induction on n to prove that whenever a1 + · · · + an = 0 or 1, ai ∈ F ,
then [a1, . . . , an] = 0.

Exercise 21. Prove that KM
2 (Fq) = 0 for any finite field Fq.

Exercise 22. An (additive) abelian group A is called divisible if for every positive integer
n and every x ∈ A, there exists y ∈ A such that ny = x. Prove (by induction) that for all
n ≥ 1, KM

n (R) is the direct sum of a Z/2Z summand generated by [−1]n and a divisible
group generated by {[a1, . . . , an] | a1, . . . , an > 0}. Hence

KM
∗ (R)/(2) ∼= F2[ρ]

where ρ is a polynomial generator corresponding to [−1].

5We will say much more about (an)isotropic quadratic forms later.
6It is clear that ( , )F always satisfies the Steinberg relation; bimultiplicatiivty takes work.
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