MILNOR-WITT K-THEORY

KYLE ORMSBY

Recall that Milnor K-theory of a field F is the quotient of the free associative algebra on $[F^{\times}] = \{[a] \mid a \in F^{\times}\}$ which imposes the

logarithm relation: [ab] = [a] + [b] for $a, b \in F^{\times}$, and

Steinberg relation: [a][b] = 0 for $a, b \in F^{\times}$ such that a + b = 1.

Milnor K-theory inherits a grading from word-length in $[F^{\times}]$ so that the degree of [a] is 1. The resulting graded commutative ring is denoted $K_*^M(F)$.

Similarly, Milnor-Witt K-theory of F is defined as a quotient of the free associative algebra on $[F^{\times}] \coprod \{\eta\}$ in which $\deg[a] := 1$ and $\deg \eta := -1$. In this case, we impose the

 η -twisted logarithm relation: $[ab] = [a] + [b] + [a][b]\eta$ for $a, b \in F^{\times}$,

Steinberg relation: [a][b] = 0 for $a, b \in F^{\times}$ such that a + b = 1,

commutativity relation: $\eta[a] = [a]\eta$ for $a \in F^{\times}$, and

Witt relation: $(2 + [-1]\eta)\eta = 0$.

The relations are all homogeneous, so the resulting ring $K_*^{MW}(F)$ is \mathbb{Z} -graded. (It retains a form of graded commutativity that we will comment upon shortly.)

If we kill η in the presentation of $K_*^{MW}(F)$, we see that we recover Milnor K-theory.

Proposition 1. For any field F,

$$K_*^{MW}(F)/(\eta) \cong K_*^M(F).$$

A number of other elementary properties of $K_*^{MW}(F)$ will become clear if we set $\langle a \rangle :=$ $1+[a]\eta$, $h=1+\langle -1\rangle$, and $\varepsilon:=-\langle -1\rangle$. Since it plays a distinguished role in the theory, let us also set $\rho := [-1]$ and note that $\varepsilon = -(1+\rho\eta)$ and the Witt relation can be rewritten as $(2+\rho\eta)\eta=0$. Since $\eta-\eta\varepsilon=(1+(1+\rho\eta))\eta$, we see that the Witt relation is equivalent to $\varepsilon \eta = \eta$. Since $h = 2 + \rho \eta$, we can also realize the Witt relation as $h \eta = 0$.

The choice of notation is not a feint: $\langle a \rangle \in K_0^{MW}(F)$ indeed corresponds to the quadratic form aX^2 , in which case h corresponds to the hyperbolic plane, and the terminology "Witt relation" resolves itself. Following the treatment in [?, Chapter 3], we will build up to an isomorphism $K_0^{MW}(F) \cong GW(F)$ in a series of lemmas.

Lemma 2. For all $a, b \in F^{\times}$,

- (i) $[ab] = [a] + \langle a \rangle [b] = [a] \langle b \rangle + [b],$
- (ii) $\langle ab \rangle = \langle a \rangle \langle b \rangle$, (iii) $\langle 1 \rangle = 1 \in K_0^{MW}(F)$ and $[1] = 0 \in K_1^{MW}(F)$, and
- (iv) $[a/b] = [a] \langle a/b \rangle [b]$.

Proof. For (i), simply compute

$$[a] + \langle a \rangle [b] = [a] + (1 + [a]\eta)[b] = [a] + [b] + [a][b]\eta = [ab]$$

Date: July 10, 2015.

¹The Witt relation then says that h kills η . In the Witt ring W(F), the image of the hyperbolic plane is 0, foreshadowing some relationship between $K_*^{MW}(F)$ in negative grading and W(F).

where the final equality is the η -twisted logarithm relation.

For (ii), multiply the η -twisted logarithm relation by η to get

$$[ab]\eta = [a]\eta + [b]\eta + [a][b]\eta^2.$$

Adding 1 to both sides and liberally applying the commutativity relation, we see that

$$\langle ab \rangle = 1 + [a]\eta + [b]\eta + [a][b]\eta^2 = (1 + [a]\eta)(1 + [b]\eta) = \langle a \rangle \langle b \rangle.$$

For (iii), observe that $\langle 1 \rangle - 1 = [1]\eta$, and by the Witt relation, $[1]\eta h = 0$, i.e.,

$$(\langle 1 \rangle - 1)(\langle -1 \rangle + 1) = 0.$$

By (ii), we can expand the left-hand side to get

$$\langle -1 \rangle + \langle 1 \rangle - \langle -1 \rangle - 1 = 0,$$

implying that $\langle 1 \rangle = 1$. Now by (i), $[1] = [1] + \langle 1 \rangle [1] = [1] + [1]$, and subtracting [1] from both sides we see [1] = 0.

Property (iv) is now an easy consequence of the others.

Lemma 3. For all $a, b \in F^{\times}$,

- (i) [a][-a] = 0 and $\langle a \rangle + \langle -a \rangle = h$,
- (ii) $[a][a] = [a][-1] = \varepsilon[a][-1] = [-1][a] = \varepsilon[-1][a],$
- (iii) $[a][b] = \varepsilon[b][a]$, and
- $(iv) \langle a^2 \rangle = 1.$

Proof. To prove the first part of (i), note that -a = (1-a)/(1-1/a), whence $[-a] = [1-a] - \langle -a \rangle [1-1/a]$ by Lemma 2(i). Multiplying on the left by [a], we get

$$[-a] = [a][1-a] - \langle -a \rangle [a][1-1/a]$$
$$= 0 - \langle -a \rangle [a][1-1/a]$$
$$= \langle -a \rangle \langle a \rangle [1/a][1-1/a]$$
$$= 0.$$

We now prove (ii) before returning to the second part of (i). Since $[-a] = [-1] + \langle -1 \rangle [a]$, we can multiply by [a] on the left (and recall that [a][-a] = 0) to get

$$0 = [a][-1] + \langle -1 \rangle [a][a],$$

in which case

$$[a][a] = -\langle -1\rangle[a][-1] = \varepsilon[a][-1].$$

Note, though, that $0 = [1] = [-1] + \langle -1 \rangle [-1]$, so we also know that $-\langle -1 \rangle [-1] = [-1]$, in which case

$$[a][a] = [a][-1]$$

as well.

To get the other two equalities in (ii), again start with $[-a] = [-1] + \langle -1 \rangle [a]$ and multiply by [a] on the right. The argument is similar.

We now return to the second claim from (i) and compute

$$\begin{split} \langle a \rangle + \langle -a \rangle &= 1 + [a] \eta + 1 + [-a] \eta \\ &= 2 + ([a] + [-a]) \eta \\ &= 2 + ([-a^2] - \eta [a] [-a]) \eta \\ &= 2 + [-a^2] \eta \\ &= 2 + ([-1] + [a^2] + [-1] [a^2] \eta) \eta \\ &= h + [a^2] (1 + [-1] \eta) \eta \\ &= h - [a^2] \eta \\ &= h - (2[a] + [a] [a] \eta) \eta \\ &= h - (2[a] + [a] [-1] \eta) \eta \\ &= h - [a] (2 + [-1] \eta) \eta \\ &= h. \end{split}$$

To prove (iii), start with 0 = [ab][-ab] and then expand according to Lemma 2(i) to get $0 = ([a] + \langle a \rangle[b])([-a] + \langle -a \rangle[b]).$

Expanding this (and using centrality of $K_0^{MW}(F)$, (i), and multiplicativity of $\langle \rangle$), we get

$$0 = \langle a \rangle ([b][-a] + \langle -1 \rangle [a][b]) + \langle -1 \rangle [-1][b].$$

Replacing [-a] with $[a] + \langle a \rangle [-1]$, we get

$$0 = \langle a \rangle ([b][a] + \langle -1 \rangle [a][b]) + ([b][-1] + \langle -1 \rangle [-1][b]).$$

By (ii), we know that the last term is 0. Multiplying by $\langle 1/a \rangle$ and using $\langle 1 \rangle = 1$, we finally get that

$$0 = [b][a] - \varepsilon[a][b],$$

giving the result.

To prove (iv), first observe that $[a^2] = 2[a] + [a][a]\eta = 2[a] + [-1][a]\eta$. Factoring out an [a], we get

$$[a^2] = (2 + [-1]\eta)[a] = h[a].$$

Thus

$$\langle a^2 \rangle = 1 + [a^2] \eta = 1$$

by the Witt relation.

We are now in a good position to elucidate the relationship between $K_0^{MW}(F)$ and the Grothendieck-Witt ring, GW(F). First recall that GW(F) is isomorphic to the quotient of the free commutative algebra on $\{\langle a \rangle \mid a \in F^{\times} \}$ by the ideal encoding the relations

$$\langle ab^2 \rangle = \langle a \rangle,$$
(4)
$$\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle, \text{ and}$$

$$\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle (a + b)ab \rangle$$

for any $a, b \in F^{\times}$ (and $a + b \neq 0$ for the final relation).

Let $W(F) = GW(F)/(h) = GW(F)/\mathbb{Z}h$ denote the Witt ring, and let dim : $GW(F) \to \mathbb{Z}$ and dim₀ : $W(F) \to \mathbb{Z}/2\mathbb{Z}$ denote the dimension and mod 2 dimension homomorphisms,

respectively. The fundamental ideals in the Grothendieck-Witt and Witt rings are GI(F) = ker dim and I(F) = ker dim₀, respectively. We have

$$0 \longrightarrow GI(F) \longrightarrow GW(F) \xrightarrow{\dim} \mathbb{Z} \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I(F) \longrightarrow W(F) \xrightarrow{\dim_0} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

so that

$$GW(F) \cong W(F) \times_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z}$$

is a pullback ring.

Proposition 5. The assignment $a \mapsto \langle a \rangle$ induces isomorphisms ϕ_n , $n \leq 0$, which fit into the commutative diagram

in which the left-hand vertical map is reduction mod (h).

Proof of well-definition. We first check that ϕ_0 is well-defined. The well-definition of ϕ_n immediately follows since η^{-n} kills h. Lemma 2(ii) and Lemma 3(iv) imply that $\langle ab^2 \rangle = \langle a \rangle \in K_0^{MW}(F)$. Lemma 3(i) says that $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle \in K_0^{MW}(F)$. As for the final relation in Equation 4, first note that we may assume a+b=1. Indeed, otherwise we may multiply by $\langle 1/(a+b) \rangle$, effectively replacing a with a/(a+b) and b with b/(a+b). Now if a+b=1, we only need to check that

$$\langle a \rangle + \langle b \rangle = \langle 1 \rangle + \langle ab \rangle,$$

i.e. that

$$2 + ([a] + [b])\eta = 2 + [ab]\eta.$$

But $[a] + [b] = [ab] - [a][b]\eta = [ab]$ by the Steinberg relation, so the equation holds and ϕ_0 is well-defined.

We now pause the proof of Proposition 5 to introduce Morel's J^* -construction which will play a prominent role in our study of Milnor-Witt K-theory (and which we will use in order to finish our proof). First recall Milnor's homomorphisms

$$\alpha_n: K_n^M(F) \to I^n(F)/I^{n+1}(F)$$

which take symbols $[a_1, \ldots, a_n]$ to $\langle \langle -a_1, \ldots, -a_n \rangle \rangle + I^{n+1}(F)$ where $\langle \langle b \rangle \rangle = \langle 1, b \rangle$ and $\langle \langle b_1, \ldots, b_n \rangle \rangle = \langle \langle b_1, \ldots, b_{n-1} \rangle \rangle \otimes \langle \langle b_n \rangle \rangle$. (These are so-called *Pfister forms*.) For notational convenience, let us write $i^n(F) := I^n(F)/I^{n+1}(F)$.²

We may now form the pullback

$$J^{n}(F) \longrightarrow K_{n}^{M}(F)$$

$$\downarrow \qquad \qquad \downarrow$$

$$I^{n}(F) \longrightarrow i^{n}(F)$$

i.e.,

$$J^n(F) := I^n(F) \times_{i^n(F)} K_n^M(F).$$

If we interpret $I^n(F)$ as W(F) for $n \leq 0$, then we get $J^n(F) = W(F)$ for n < 0, and

$$J^0(F) = W(F) \times_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z} \cong GW(F).$$

Continuing to drastically overload symbols in the name of future notational simplicity, let us define $\eta:=1\in J^{-1}(F)=W(F)$. Further, let $[a]:=(\langle a\rangle-1,[a])\in J^1(F)\subset I(F)\times K_1^M(F)$. It is straightforward to check that the η -twisted logarithm, Steinberg, commutativity, and Witt relations hold amongst these terms in $J^*(F)$. Thus we get a homomorphism of graded rings $K_*^{MW}(F)\to J^*(F)$ taking η to η and [a] to [a]. It is clear that this map is surjective in degrees $n\leq 0$, and the reader may check that (by germanely adding copies of the hyperbolic plane), it is surjective in degree n=1. It follows that $K_*^{MW}(F)\to J^*(F)$ is surjective in all degrees.

Proof of Proposition 5, continued. We have already noted that ϕ_n is surjective for $n \leq 0$. Let n < 0 and note that the composite $W(F) = J^n(F) \to K_n^{MW}(F) \xrightarrow{\phi_n} W(F)$ is the identity. It follows that ϕ_n is injective as well. In case n = 0, we again have that $GW(F) \cong J^0(F) \to K_n^{MW}(F) \xrightarrow{\phi_0} GW(F)$ is the identity, whence ϕ_0 is an isomorphism. We conclude that ϕ_n is an isomorphism for all $n \leq 0$.

In fact, more is true.

Theorem 6. The canonical map $K_*^{MW}(F) \to J^*(F)$ is an isomorphism.

$$Proof\ (following\ [?]).$$

²Of course, by the affirmative resolution of Milnor's conjecture on quadratic forms, $i^n(F) \cong k_n^M(F)$ where $k_n^M(F) := K_n^M(F)/(2)$, but we will not use this for some time.