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Recall that Milnor K-theory of a field F is the quotient of the free associative algebra on
[F×] = {[a] | a ∈ F×} which imposes the

logarithm relation: [ab] = [a] + [b] for a, b ∈ F×, and
Steinberg relation: [a][b] = 0 for a, b ∈ F× such that a+ b = 1.

Milnor K-theory inherits a grading from word-length in [F×] so that the degree of [a] is 1.
The resulting graded commutative ring is denoted KM

∗ (F ).
Similarly, Milnor-Witt K-theory of F is defined as a quotient of the free associative

algebra on [F×]q {η} in which deg[a] ..= 1 and deg η ..= −1. In this case, we impose the

η-twisted logarithm relation: [ab] = [a] + [b] + [a][b]η for a, b ∈ F×,
Steinberg relation: [a][b] = 0 for a, b ∈ F× such that a+ b = 1,
commutativity relation: η[a] = [a]η for a ∈ F×, and
Witt relation: (2 + [−1]η)η = 0.

The relations are all homogeneous, so the resulting ring KMW
∗ (F ) is Z-graded. (It retains

a form of graded commutativity that we will comment upon shortly.)
If we kill η in the presentation of KMW

∗ (F ), we see that we recover Milnor K-theory.

Proposition 1. For any field F ,

KMW
∗ (F )/(η) ∼= KM

∗ (F ).

A number of other elementary properties of KMW
∗ (F ) will become clear if we set 〈a〉 ..=

1 + [a]η, h = 1 + 〈−1〉, and ε ..= −〈−1〉. Since it plays a distinguished role in the theory, let
us also set ρ ..= [−1] and note that ε = −(1 + ρη) and the Witt relation can be rewritten as
(2 + ρη)η = 0. Since η− ηε = (1 + (1 + ρη))η, we see that the Witt relation is equivalent to
εη = η. Since h = 2 + ρη, we can also realize the Witt relation as hη = 0.

The choice of notation is not a feint: 〈a〉 ∈ KMW
0 (F ) indeed corresponds to the quadratic

form aX2, in which case h corresponds to the hyperbolic plane, and the terminology “Witt
relation” resolves itself.1 Following the treatment in [?, Chapter 3], we will build up to an
isomorphism KMW

0 (F ) ∼= GW (F ) in a series of lemmas.

Lemma 2. For all a, b ∈ F×,

(i) [ab] = [a] + 〈a〉[b] = [a]〈b〉+ [b],
(ii) 〈ab〉 = 〈a〉〈b〉,

(iii) 〈1〉 = 1 ∈ KMW
0 (F ) and [1] = 0 ∈ KMW

1 (F ), and
(iv) [a/b] = [a]− 〈a/b〉[b].

Proof. For (i), simply compute

[a] + 〈a〉[b] = [a] + (1 + [a]η)[b] = [a] + [b] + [a][b]η = [ab]
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1The Witt relation then says that h kills η. In the Witt ring W (F ), the image of the hyperbolic plane

is 0, foreshadowing some relationship between KMW
∗ (F ) in negative grading and W (F ).
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where the final equality is the η-twisted logarithm relation.
For (ii), multiply the η-twisted logarithm relation by η to get

[ab]η = [a]η + [b]η + [a][b]η2.

Adding 1 to both sides and liberally applying the commutativity relation, we see that

〈ab〉 = 1 + [a]η + [b]η + [a][b]η2 = (1 + [a]η)(1 + [b]η) = 〈a〉〈b〉.

For (iii), observe that 〈1〉 − 1 = [1]η, and by the Witt relation, [1]ηh = 0, i.e.,

(〈1〉 − 1)(〈−1〉+ 1) = 0.

By (ii), we can expand the left-hand side to get

〈−1〉+ 〈1〉 − 〈−1〉 − 1 = 0,

implying that 〈1〉 = 1. Now by (i), [1] = [1] + 〈1〉[1] = [1] + [1], and subtracting [1] from
both sides we see [1] = 0.

Property (iv) is now an easy consequence of the others. �

Lemma 3. For all a, b ∈ F×,

(i) [a][−a] = 0 and 〈a〉+ 〈−a〉 = h,
(ii) [a][a] = [a][−1] = ε[a][−1] = [−1][a] = ε[−1][a],

(iii) [a][b] = ε[b][a], and
(iv) 〈a2〉 = 1.

Proof. To prove the first part of (i), note that −a = (1 − a)/(1 − 1/a), whence [−a] =
[1− a]− 〈−a〉[1− 1/a] by Lemma 2(i). Multiplying on the left by [a], we get

[−a] = [a][1− a]− 〈−a〉[a][1− 1/a]

= 0− 〈−a〉[a][1− 1/a]

= 〈−a〉〈a〉[1/a][1− 1/a]

= 0.

We now prove (ii) before returning to the second part of (i). Since [−a] = [−1] + 〈−1〉[a],
we can multiply by [a] on the left (and recall that [a][−a] = 0) to get

0 = [a][−1] + 〈−1〉[a][a],

in which case

[a][a] = −〈−1〉[a][−1] = ε[a][−1].

Note, though, that 0 = [1] = [−1] + 〈−1〉[−1], so we also know that −〈−1〉[−1] = [−1], in
which case

[a][a] = [a][−1]

as well.
To get the other two equalities in (ii), again start with [−a] = [−1]+〈−1〉[a] and multiply

by [a] on the right. The argument is similar.
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We now return to the second claim from (i) and compute

〈a〉+ 〈−a〉 = 1 + [a]η + 1 + [−a]η

= 2 + ([a] + [−a])η

= 2 + ([−a2]− η[a][−a])η

= 2 + [−a2]η

= 2 + ([−1] + [a2] + [−1][a2]η)η

= h+ [a2](1 + [−1]η)η

= h− [a2]η

= h− (2[a] + [a][a]η)η

= h− (2[a] + [a][−1]η)η

= h− [a](2 + [−1]η)η

= h.

To prove (iii), start with 0 = [ab][−ab] and then expand according to Lemma 2(i) to get

0 = ([a] + 〈a〉[b])([−a] + 〈−a〉[b]).

Expanding this (and using centrality of KMW
0 (F ), (i), and multiplicativity of 〈〉), we get

0 = 〈a〉([b][−a] + 〈−1〉[a][b]) + 〈−1〉[−1][b].

Replacing [−a] with [a] + 〈a〉[−1], we get

0 = 〈a〉([b][a] + 〈−1〉[a][b]) + ([b][−1] + 〈−1〉[−1][b]).

By (ii), we know that the last term is 0. Multiplying by 〈1/a〉 and using 〈1〉 = 1, we finally
get that

0 = [b][a]− ε[a][b],

giving the result.
To prove (iv), first observe that [a2] = 2[a] + [a][a]η = 2[a] + [−1][a]η. Factoring out an

[a], we get

[a2] = (2 + [−1]η)[a] = h[a].

Thus

〈a2〉 = 1 + [a2]η = 1

by the Witt relation. �

We are now in a good position to elucidate the relationship between KMW
0 (F ) and the

Grothendieck-Witt ring, GW (F ). First recall that GW (F ) is isomorphic to the quotient of
the free commutative algebra on {〈a〉 | a ∈ F×} by the ideal encoding the relations

(4)

〈ab2〉 = 〈a〉,
〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉, and

〈a〉+ 〈b〉 = 〈a+ b〉+ 〈(a+ b)ab〉

for any a, b ∈ F× (and a+ b 6= 0 for the final relation).
Let W (F ) = GW (F )/(h) = GW (F )/Zh denote the Witt ring, and let dim : GW (F )→ Z

and dim0 : W (F ) → Z/2Z denote the dimension and mod 2 dimension homomorphisms,
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respectively. The fundamental ideals in the Grothendieck-Witt and Witt rings are GI(F ) =
ker dim and I(F ) = ker dim0, respectively. We have

0 // GI(F ) //

∼=
��

GW (F )
dim //

��

Z //

��

0

0 // I(F ) // W (F )
dim0

// Z/2Z // 0

so that

GW (F ) ∼= W (F )×Z/2Z Z
is a pullback ring.

Proposition 5. The assignment a 7→ 〈a〉 induces isomorphisms φn, n ≤ 0, which fit into
the commutative diagram

GW (F )
φ0 //

��

KMW
0 (F )

η

��
W (F )

φ−1 //

φ−2

%%

φ−3

��

KMW
−1 (F )

η

��
KMW

−2 (F )

η

��
KMW

−3 (F )

η��
...

in which the left-hand vertical map is reduction mod (h).

Proof of well-definition. We first check that φ0 is well-defined. The well-definition of φn
immediately follows since η−n kills h. Lemma 2(ii) and Lemma 3(iv) imply that 〈ab2〉 =
〈a〉 ∈ KMW

0 (F ). Lemma 3(i) says that 〈a〉 + 〈−a〉 = 〈1〉 + 〈−1〉 ∈ KMW
0 (F ). As for the

final relation in Equation 4, first note that we may assume a + b = 1. Indeed, otherwise
we may multiply by 〈1/(a+ b)〉, effectively replacing a with a/(a+ b) and b with b/(a+ b).
Now if a+ b = 1, we only need to check that

〈a〉+ 〈b〉 = 〈1〉+ 〈ab〉,
i.e. that

2 + ([a] + [b])η = 2 + [ab]η.

But [a] + [b] = [ab] − [a][b]η = [ab] by the Steinberg relation, so the equation holds and φ0
is well-defined. �

We now pause the proof of Proposition 5 to introduce Morel’s J∗-construction which will
play a prominent role in our study of Milnor-Witt K-theory (and which we will use in order
to finish our proof). First recall Milnor’s homomorphisms

αn : KM
n (F )→ In(F )/In+1(F )
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which take symbols [a1, . . . , an] to 〈〈−a1, . . . ,−an〉〉 + In+1(F ) where 〈〈b〉〉 = 〈1, b〉 and
〈〈b1, . . . , bn〉〉 = 〈〈b1, . . . , bn−1〉〉⊗〈〈bn〉〉. (These are so-called Pfister forms.) For notational
convenience, let us write in(F ) ..= In(F )/In+1(F ).2

We may now form the pullback

Jn(F ) //

��

KM
n (F )

��
In(F ) // in(F )

i.e.,
Jn(F ) ..= In(F )×in(F ) K

M
n (F ).

If we interpret In(F ) as W (F ) for n ≤ 0, then we get Jn(F ) = W (F ) for n < 0, and

J0(F ) = W (F )×Z/2Z Z ∼= GW (F ).

Continuing to drastically overload symbols in the name of future notational simplicity,
let us define η ..= 1 ∈ J−1(F ) = W (F ). Further, let [a] ..= (〈a〉 − 1, [a]) ∈ J1(F ) ⊂
I(F ) × KM

1 (F ). It is straightforward to check that the η-twisted logarithm, Steinberg,
commutativity, and Witt relations hold amongst these terms in J∗(F ). Thus we get a
homomorphism of graded rings KMW

∗ (F ) → J∗(F ) taking η to η and [a] to [a]. It is clear
that this map is surjective in degrees n ≤ 0, and the reader may check that (by germanely
adding copies of the hyperbolic plane), it is surjective in degree n = 1. It follows that
KMW

∗ (F )→ J∗(F ) is surjective in all degrees.

Proof of Proposition 5, continued. We have already noted that φn is surjective for n ≤ 0.

Let n < 0 and note that the composite W (F ) = Jn(F ) → KMW
n (F )

φn−−→ W (F ) is the
identity. It follows that φn is injective as well. In case n = 0, we again have that GW (F ) ∼=
J0(F )→ KMW

n (F )
φ0−→ GW (F ) is the identity, whence φ0 is an isomorphism. We conclude

that φn is an isomorphism for all n ≤ 0. �

In fact, more is true.

Theorem 6. The canonical map KMW
∗ (F )→ J∗(F ) is an isomorphism.

Proof (following [?]). �

2Of course, by the affirmative resolution of Milnor’s conjecture on quadratic forms, in(F ) ∼= kMn (F )

where kMn (F ) ..= KM
n (F )/(2), but we will not use this for some time.


