Non-nilpotent elements in motivic homotopy theory




Equivariant music - Steve Reich’s “Clapping Music”

x=(1,1,1,0,1,1,0,1,0,1,1,0) € F32.
Cio C¥ppactson Fi2 Let g=(123 --- 11 12) € Cpo.

There are two players and the score is:
1. (x,x) € F}? x F}?

. (x,xg) € F3* x F}?

. (x,xg?) € F}? x F}?

. (x,xg3) € F}? x F}?

o AW N

(x,xg'?) = (x,x) € F32 x F32.

Question: What choices of x € F32/Cy, lead to interesting pieces
of music?

Claim: Apparently only two choices! Reich chose a particular
representative of one of them.



Chromatic homotopy theory at p = 2

First, | would like to recall the theme of chromatic homotopy
theory, which provides a beautiful framework for making
calculations.

Throughout this talk we will work at the prime 2.

1. All classical spectra will be 2-local.

2. All motivic spectra will be completed with respect to the
Eilenberg-MacLane spectrum HF5.



Non-nilpotent self-maps

Suppose X is a finite 2-local spectrum and f : X — ¥ 9X is a
non-nilpotent self-map. By definition, this means that each
composite

X sy dx sy2dx o, Ly (n-Ddy ,y-ndy

is nontrivial.

What does this mean for m,(X)?
1. There are f-free elements. Let f~1X be the homotopy colimit
of
X=X X —5r %X ...

and try to calculate m,(f~1X).

2. There are f-torsion elements. Let X/f be the cofiber of f.
Try to calculate 7. (X/f). Do this by trying to find a
non-nilpotent self-map on X/f and iterating the above
procedure.



Example

2: 5% — S%is a non-nilpotent self-map.

1. The only 2-free elements are in stem 0. Serre's calculation
says

(2715%) = Q.
2. We'd like to calculate m.(S5/2).

v4
¥85/2 —-5/2

L

g8 _ 8 _ g1

| |

S8 st

v{ induces an isomorphism on K-theory, so is non-nilpotent.
Mahowald calculates m,(v; 15/2).



Periodicity

Theorem (Mitchell, Hopkins, Smith)
For each n > 0, there exists a finite spectrum X such that

K(n).X #0, K(n—1),X = 0.

Any such spectrum admits a self map f such that K(n).f is an
isomorphism and K(j).f is nilpotent whenever j # n. Such an f is
called a v, self-map.

Examples:
1.n=0:2:5%—5°
2.n=1v}{:5/2—%¥785)2
3. n=2:32:5/(2,v{) = £71925/(2,v})

Theorem says we can always continue this process.



Motivic homotopy theory

The spaces of topology + the schemes of algebraic geometry
~~—~> motivic homotopy theory.

Have usual topological 1-sphere S0 = St
and the algebraic 1-sphere S11 = Al — 0.

Must specify a ground field. For most of the talk it's C.
New question: what is , .(S%0)?

Second grading is called weight.
Realization functor X — X(C) returns classical story.



Motivic n

Recall, classically
n:5%cC?-0—PYC) =52

son € m1(S°).

Motivically,
n:8§%2=A%-0— P! =521

son € 71'171(50’0).

Remarkably 1" = 0 for all n in the motivic story.
We'll see this by a spectral sequence argument.



Program

L. 7 x(n1S%0) over C.
2. A self-map on S/n over C. Then over R.

3. Over R: towards an analog of the theorem of Mitchell,
Hopkins and Smith.



The Adams-Novikov spectral sequence

HS“(BP.BP) == m,_s(5%) ® Zy).

BP.BP = m,(BP A BP),
BP = the 2-local Brown-Peterson spectrum.

H(BP.BP) = cohomology of the Hopf algebroid BP.BP
with coefficents in BP,, a Z(z)—algebra.

7.(S0) is filtered.
Fsm,_s(S%)/Fstim,_s(S°) approximated by H®“(BP,BP).



The motivic Adams-Novikov spectral sequence

Non-zero elements of H*“(BP,BP) have u even and so we can
assign them a weight w = u/2.

The motivic Adams-Novikov spectral sequence takes the form
HS4(BP.BP)[7]" == my—sw((5°°)5)
where |7 = (0,0, —1). Hu, Kriz, Ormsby, Dugger, Isaksen.

Setting 7 = 1 and forgetting the weight returns the classical
spectral sequence.

Classical differentials give motivic differentials:

d2n+1X =y > d2n+1X = T"y.



The Adams-Novikov spectral sequence

Plot H>“(BP.BP) in the (u — s, s)-plane.

Nodes will indicate generators for Z;)-modules.

14



The Adams-Novikov spectral sequence

ol  @,e H¥2"(BP.BP).

12

14



The Adams-Novikov spectral sequence

8 a, € H“?"(BP,BP).
Generate an algebra.

61 Round nodes indicate Z/2.
Square nodes labelled with n # oo indicate Z/2".
4<
’ /.ag / / / / K /
0%

0 2 4 6 8 10 12 14 u—-s



The Adams-Novikov spectral sequence

8 a, € H“?"(BP,BP).
Generate an algebra.

61 Lines of slope 1: @j-multiplication.

. .
a3 as
2y / 4/ / 3/ / 5/
Q: as Qg as y a: ay

(o3 a7 g

0 2 4 6 8 10 12 14



The Adams-Novikov spectral sequence

s

N All of H(BP.BP) in given range.

6<

4<

21 3 / /
o 0 Y

0%




The Adams-Novikov spectral sequence

S
81 Qap ~>1);

Qp ~~r> v

Oy ~—~—>= 0.
6 4
4 4
21 a3 a3

% / 4/ / 3/ / 5/
ay an as Qg s Qg a7 ag

0%




The Adams-Novikov spectral sequence

s
81 Qa1 ~—~—>=1).
n* =0, but @} # 0 for all n.
6<
4<
21 B / /
’ .. O L L
ay an a3 Qg Qs [ ar ag
0%

0 2 4 6 8 10 12 14



The Adams-Novikov spectral sequence

s
8 51 ~=>=1].
774 =0, but af # 0 for all n.
6<
Even worse: for k # 2, afay # 0 for all n.
4<
| . / a/
/ . / 4/ / 3/ / 5/
(a5} an a3 (o7 (873 (o3 a7 g
0%

0 2 4 6 8 10 12 14



The Adams-Novikov spectral sequence

Family of differentials (Novikov) resolve this conflict:

d304k—1 = O7Q4k—3, d3Qaki2 = A0k, k> 1.




The Adams-Novikov spectral sequence

:A See 2a; =0, so 2n = 0.
See 16a4 = 0, so 160 = 0.
6 as = (8ay, 2,a1) ~~—> g = (80,2, 7).
" P , ’ ,
21 & {/
N a .62 a3 ar ag

12



The (motivic) Adams-Novikov spectral sequence




The motivic Adams-Novikov spectral sequence

s
N @4 and @ detect

o€ 7r774(50’0) and pg € 7r975(5070).

1n"c # 0 and 1" ug # 0 for all n.
6<
44 e ) /
, Ao . / /

2 g
2y 4/ / 5/
ay an a3 Qg s a7 ag

0%




The n-local homotopy of the motivic sphere

Theorem (A., Miller)

71—*7*(,'7_150,0) = Fz [ni17 g, /1/9]/(770—2)7

where n € m1.1(S%0) and o € 77,4(5%°) are motivic Hopf invariant
one elements and 19 = (80,2,n) € mo5(S%P) is detected by @s in
the motivic Adams-Novikov spectral sequence.



The Adams-Novikov Ej-page




Key computation: @; 'H(BP,BP)

Proposition (A., Miller)

H(BP.BP) — a;*H(BP.BP)

is an isomorphism above a line of slope 1/5 in (u — s, s)
coordinates and

@, 'H(BP,BP) = Falail, @z, a4l /(a1@3).



The (motivic) Adams-Novikov spectral sequence




The chromatic approach to classical homotopy theory




The chromatic approach to classical homotopy theory




The chromatic approach to classical homotopy theory

1.2:5%— s°% 7. (27159);
2. v{:5/2—%£785)2, T (v 1S/2);



The chromatic approach to classical homotopy theory

1. 2:50 59 7. (27159);
2. v{:5/2—%£785)2, T (v 1S/2);
3.32:S5/(2,vf) — 271925/(2, v, m(vs 1S/(2,v})).



The chromatic approach to motivic homotopy theory

.|

N
N

A
\
N

1. . (271590);
2. W*,*(vl_15/2);
3. ma(v15/(2.)).



T V1

wo,
=

But is there more?
7

n:S§00 5 ¥-1,-1500

1. wy



But is there more?

v

Yo wo, o

1. wog=n:8%0 » y-1-1500

2. g € m95(S%0) is vi and wo-periodic. It fills the gap.



But is there more?

v

Yo wo, o

1. wo=mn:8%0 —» y-1-1500
2. pg € 7r9,5(5070) is v1 and wp-periodic. It fills the gap.
3wy S/p— 7207125 /07



But is there more? A new constellation

585,985,053, A8, 18, 15, 4




But is there more? A new constellation




But is there more? A new constellation

585,985,053, A8, 18, 15, 4




A new non-nilpotent self-map

Classically, we have non-nilpotent self-map

vi :285/2 = 5)2,

Motivically, we have...

Theorem (A.)

There is a non-nilpotent self map

wi  X20125 /1 — S/n.



What's the map?

¥85/2 S/2
58 8a 51
2 2

S8 st



What's the map?

¥85/2 S/2
58 8a 51
2 2

S8 st



What's the map?

220,125/77 5/17
520,12 7 §21
n n

521,13 S0



What's the map?

$20.125 /)

520,12 "

521,13




My secret: a square of SSs

Classically, one has a diagram:

H(P; Q) CESS H(A)

aIg—Nov—SS\H] ﬂASS

H(BP, BP) =233 m.(S°)




Motivicifying the square

H(P; Q)l] CESS H(Amot)
aIg—Nov—SS[T]ﬂ \HMASS
H(BP, BP)[r] =—=MANSS T (599)

We localized with respect to an element hy € H(P; Q)[r] and
completely described the square.

We did not only compute 7, .(7715%0) but also the localized
motivic ASS converging to it, confirming a conjecture of
Guillou-Isaksen.

A main ingredient in the proof is a formula due to Miller and
Wilson in their first paper on Novikov's Ext! modulo an invariant
prime ideal.



The classical chromatic story and @

The classical chromatic story is loaded up in Q:
gn € Q ~—>v, € BP, = Z(p)[vl, Vo, .. ]

Everything one does with BP,

e.g. BP./(p,vi,...,Vno 1), vy 'BP./(P,v1,. .., Vo 1),
vy 1BP,/(p%°, Vi, ..., v2)

one can do with @ and one has appropriate algebraic Novikov SSs.



A new chromatic story with P?

ho € H(P; Q) corresponds to &1 € P.

Classically, the chromatic story is governed by p, vi,vs,... € BP,
and thus, qo,91,92,... € Q.

Motivically, there may be other periodicity operators corresponding
to 515527537"' € P.

| want to call them 19, 71,72, . ..
Mahowald already has the 7; family so I'll go with wo, wi, wo, ...



How to make sense of w,? Over R.

Given a motivic spectrum X defined over R, its complex points

define a genuine X -spectrum, and we can take geometric fixed
points ®>2X¢.

1. n:SY = S0 gives rise to 2 : SO — SO,

2. wy: ¥20125 /5 — S/n can be defined over R. The
construction returns the Adams self-map vj : £85/2 — S/2.

3. By a w, self-map, we'll mean a map defined over R such that
the geometric fixed points of the map on complex points is a
vp self-map.



Toward a periodicity theorem

Theorem

For each n > 0, there exists a finite spectrum X defined over R
such that

K(n)«(®2Xc) # 0, K(n—1).(®2Xc) = 0.

We can chose such a spectrum so that it admits a w,, self-map.



The end: thank you for listening




