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Convergence of the Motivic Adams Spectral Sequence

by
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Abstract

We prove convergence of the motivic Adams spectral sequence to completions
at p and � under suitable conditions. We also discuss further conditions under
which � can be removed from the statement.
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1. Introduction

In [9], we proved convergence of the motivic Adams spectral sequence for spectra
X of finite type (for definition, see Section 2 below) in the (bi)stable homotopy
category over Spec.F /where F is an algebraically closed field of characteristic 0 to
the homotopy groups of the 2-completion of X . Since that time, a number of people
asked how far the argument can be generalized using the same method. Notably,
the question came up in discussion at the Conference on Motivic Homotopy Theory
in Münster, 2009. The purpose of this note is to answer this question. Specifically,
recall thatKM .F / denotes MilnorK-theory of F , andKMW .F / is the Milnor-Witt
ring [13], which is canonically isomorphic to �0C�˛.S/. This is the “0-slice” of
the motivic stable homotopy groups of the sphere; recall that we write �kC`˛ D
�.kC`;`/. Recall also that there is an element � 2K1MW D �˛.S/ such that

KMW =�ŠKM : (1)

Then, in this note, we prove convergence of the motivic Adams spectral sequence for
motivic cell spectra X of finite type to the homotopy groups of the completion of X
at p and � for any field of characteristic 0, and p a prime number. We further prove
that completion at p and � in the above statement can be replaced by completion at
p under suitable conditions.

Throughout this paper (except where specified explicitly), we shall work in the
(bi)stable motivic homotopy category (cf. [13]), i.e. S1 D S .1;0/ and S˛ D S .1;1/

�Hu was supported by NSF grant DMS 0503814. Kriz was supported by NSA grant H 98230-09-
1-0045. Ormsby was supported by NSF RTG grant DMS 0602191.
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have inverses with respect to the smash product. Denote by HZ=p the motivic
homology spectrum with coefficients in Z=p, and by XAd the realization of the
semi-cosimplicial object

.XAd /n DX ^ HZ=p^ :::^HZ=p
�

n

where co-faces are given by the unit S !HZ=p. XAd is what is referred to as the
nilpotent completion of X with respect to HZ=p by Bousfield [5].

Denote by X^p the Bousfield localization LMZ=pX [5] of X at the (pushforward
of the) Moore spectrum MZ=p. In a very general context, including the present
situation, this is equivalent to

holim
 �
n

X=pn;

so there is the usual exact sequence

0! Ext1.Z=p1;��X/! ��.X
^
p /! Hom.Z=p1;���1X/! 0: (2)

In the present motivic context, this is treated explicitly in [15, 9]. Denote similarly

X^p;� D holim
 �
n

X=.pn;�n/:

There are canonical maps X ! X^p , X ! X^p;�, which we will refer to as
completion at p resp. completion at p;�.

The main result we prove here is the following

Theorem 1 Let F be a field of characteristic 0. Let X be a cell spectrum of finite
type over Spec.F / (see Section 2 below for definition). Then the natural map

X !XAd (3)

is a completion at p;�. When p > 2 and cdp.F / < 1 and �1 2 F is a sum of
squares, or p D 2 and cd2.F Œi �/ <1, then (3) is a completion at p.

For the definition of cdp, see [17]. At p D 2, one has the following result, which
follows in a trivial way from the Gysin sequence in Galois cohomology associated
with a quadratic field extension

:::Hn.F IZ=2/ Hn.F Œi �IZ=2/ Hn.F IZ=2/
Œ�1�

HnC1.F IZ=2/:::

(cf. [2] — here Œ�1� denotes multiplication by Œ�1� 2 F �=.F �/2 DH 1.F;Z=2/.).



Convergence of motivic Adams spectral sequence 575

Proposition 2 For any field F of characteristic 0, cd2.F Œi �/ <1 if and only if

There exists a constant r such that Œ�1� W Hn.F;Z=2/!

HnC1.F;Z=2/ is an isomorphism for n� r .
(4)

Obviously, fields of finite transcendence degree, local fields, number fields and
R are covered for p D 2 by Theorem 1. These cases of our present convergence
result already have been used in the papers [8, 16].

Corollary 3 Under the assumptions of Theorem 1, there exists a convergent
spectral sequence (“motivic Adams spectral sequence”) with

E2 D Cotor.HZ=p�;HZ=p�HZ=p/.HZ=p�X;HZ=p�/

convergent strongly to the homotopy groups of the respective completion of X .

Proof: The existence and convergence of the Adams spectral sequence is a
formal consequence of Theorem 1 by the “Mittag-Leffler convergence Lemma” of
Bousfield and Kan (Lemma 5.6, p. 264 of [3]). The point is that the tower involved
in the Adams spectral sequence is actually

.X .n//

whereX .n/ is the homotopy fiber of the canonical map from the relevant completion
of X as in Theorem 1 to the n’th cosimplicial co-skeleton of XAd . Thus, by
Theorem 1, we have

holim
 �
n

X .n/ D �;

which implies that both that

lim
 
��X

.n/ D lim
 

1��X
.n/ D 0:

The identification of the E2-term goes back to Adams [1]. �

Comments:
1. It is well known ([13, 14]) that in dimension n˛, n > 0, �n˛.S/ is isomorphic

to the Witt ring W and that the effect of completion at 2;� in these dimensions is
the completion of W at its augmentation ideal. It is easy to show that for general
fields, this does not coincide with completion at 2 (one example mentioned in [10]
is the field F DQ.x1;:::;xm;:::/Œi �). Therefore, the second statement of Theorem 1
would be false if we omit the assumption (4).

For p > 2, this issue is even sharper. Completion of ��˛.S0/ at p is isomorphic
to

W ^p ˚KM .F /
^
p : (5)
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To see this, recall that by Morel’s structure theorem [14, 13],

�n˛.S
0/D W for n > 0

I�n �I�n=I�nC1 .KM /�n.F / for n� 0.
(6)

where I is the augmentation ideal of W . By induction on n, W=I n is 2-torsion
(since 2 D Œ�1� 2 I ), so when completing at p odd, (6) becomes (5). The map �
induces an isomorphism on the first summand and 0 on the second. Therefore, the
completion at p is �-complete if and only if

W ^p D 0: (7)

Referring to [11], if the field F has a real ordering (which is equivalent to �1 not
being a sum of squares), then there exists an epimorphism

W ! Z;

which means that (7) cannot hold. Therefore, completion at � is necessary for
convergence of the Adams spectral sequence at p > 2 for any such field.

2. In the following sections, by the statement that “the motivic Adams spectral
sequence converges for X” we shall simply mean that X !XAd is an equivalence.
For essentially formal reasons, the Adams spectral sequence always converges to
the homotopy groups of XAd , [5], Section 6, also [6].

3. We have, by work of Voevodsky [19],

HZ=2� DKM=2Œ��

where � is an element of dimension 1�˛ (the “Tate twist”). For p > 2, the element
� exists only when F has p’th roots of unity, but for any prime p, we have by the
Bloch-Kato conjecture proved by Voevodsky [18],

HZ=pkC`˛ D H�`�k.F;Z=p.`// for k � 0
0 otherwise.

The structure of the dual Steenrod algebra is determined by Voevodsky [20],
with a gap filled in [21] (see also [9]). One has ([20], Theorem 12.6):

A� DHZ=2Œ�i ;�i �=.�
2
i D ��iC1C Œ�1��iC1/ (8)

for p D 2 and
A� DHZ=pŒ�i ;�i �=.�

2
i D 0/ (9)

for p > 2, where the elements �i , i > 0 resp. �i , i � 0 have dimensions .pi �1/.1C
˛/ resp. .pi � 1/.1C ˛/C 1. Actually, as shown in [20], .HZ=2�;A�/ is not a
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Hopf algebra but a Hopf algebroid; in (8), � is identified with �L� . If one uses �R�
instead, one gets an additional term, which is why the formula in Theorem 12.6 of
[20] looks slightly different. This structure theorem will be needed in the remaining
sections.

4. We stress however that the Adams filtration on homotopy groups can be quite
bad. Let, for example, p D 2, F D Q and consider the spectrum Y which is the
homotopy cofiber of the sequence

S�˛ _S
Œ3�_2

S:

Let X D Y=.4;�/. Then one can see that the kernel of the canonical onto map

��˛X !HZ=2�˛X

is not finitely presented as a KMW .Q/-module.

Acknowledgments: We would like to thank Mike Hopkins and Fabien Morel for
conversations between the years 2008 and 2010, in which they conjectured the
convergence of the motivic Adams spectral sequence for cell spectra of finite type
to the completion at .p;�/ for general fields of characteristic 0. Although no method
of proof was suggested, there is no doubt that those conversations contributed to the
present paper. We are also thankful to Paul Arne Østvær for comments on an earlier
(less general) version of this note, and to Alexander Merkurjev for a reference on
Proposition 2.

2. Cell spectra of finite type

For most of our purposes, it will be convenient to work directly in the motivic
(bi)stable homotopy category SHF over F . From this point of view, attaching
cells to a spectrum X means simply to form a homotopy cofiber of a map (in SHF )
of the form

W
i

SkiC`i˛!X:

The expressions 1 C ki C `i˛ will be referred to as the dimensions of the cells.
Starting with a point and iterating this construction, we obtain the notion of a
(motivic) cell spectrum. A priori we could iterate the construction transfinitely,
passing to homotopy colimits at limit ordinals, but commutation of homotopy
groups with infinite wedges shows that one can construct any cell spectrum by
applying at most ! steps, and taking homotopy direct limit once. It can also
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be shown (by formal arguments) that a map between motivic cell spectra is an
equivalence if and only if it induces isomorphism on all homotopy groups �kC`˛
(for general motivic spectra, such map will be called a very weak equivalence in [9]).
Also by formal arguments, for any motivic spectrum X , there exists a cell spectrum
X 0 and a very weak equivalence X 0 ! X (cf. [7]). We will call a cell spectrum X

k-connective if �mCn˛X D 0 for m < k. For a map of cell spectra f W X ! Y , we
will call f a k-equivalence if its homotopy cofiber is kC 1-connective.

Definition: A cell spectrum of finite (resp. bounded) type is a cell spectrum X

where there exists a k 2 Z such that X has no cells in dimension mC `˛, m < k,
and at most finitely many cells in dimension mC `˛ for any m 2 Z (resp. no cells
of dimension mC `˛ for ` < Nm where Nm 2 Z[ fC1g depend only on m). In
the bounded case, we will refer to the numbers Nm as bounds for X ; we require that
there exists a k 2 Z such that Nm DC1 for m< k.

Analogously, we will say that the homotopy groups ��X are of bounded type if
X is k-connective for some k 2 Z and there exist Nm 2 Z[f1g for all m 2 Z such
that �mC`˛.X/D 0 for ` < Nm.

A priori, in addition to the notion of finite type, we also have another weaker
notion of cell spectrum of weakly finite type, which is a homotopy colimit of spectra
of the formXm where we haveX�1 D �, and we have cofiber sequences of the form

Ym!Xm!XmC1

where Ym is a wedge summand of a cell spectrumZm, and the wedge
W
Zm is a cell

spectrum of finite type. Proposition 15 and comments in the Appendix of [9] imply
that HZ=p is a cell spectrum of weakly finite type (while [9] focuses on the case of
an algebraically closed field and p D 2, the same discussion applies in the general
case).

Now, however, we have the following

Lemma 4 A wedge summand X of a cell spectrum X0 of finite type is equivalent to
a cell spectrum of finite type X 0 such that for every cell of X 0 of dimension kC `˛,
there exists a k0 < k and a cell of X0 of dimension k0C `˛.

Proof: A classic Eilenberg swindle. Let

X0 'X _Y:

Let X1 be the cofiber of the map

X0!X0
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which is Id on Y and 0 on X . Then

X1 'X _†X:

Let X2 be the cofiber of the map

†X0!X1

which is Id on †X and 0 on †Y . Then

X2 'X _†
2Y:

Iterating this procedure, we obtain a spectrum of finite type equivalent to X ,
satisfying the dimensional condition stated. �

Corollary 5 A cell spectrum of weakly finite type is equivalent to a cell spectrum
of finite type.

Proof: Use Lemma 4 successively on the spectra Ym in the definition of a cell
spectrum of weakly finite type. �

Thus, we have

Lemma 6 The spectrum HZ=p is equivalent to a spectrum of finite type.

�

Now suppose we have a cell spectrum X and a number k 2 Z such that X is
k-connective. Then it is easy to see that there exists an equivalent cell spectrum X 0

with no cells of dimension mC `˛, m < k. In fact, X 0 can be obtained in ! steps
where in i’th step, i 2 !, we attach cells in dimension mC i C�˛ - simply attach
to X all cells necessary to cancel homotopy in that dimension, and in the end take
homotopy fiber of the canonical map from X - here we are using the fact [13] that

�mC`˛S D 0 for m< 0. (10)

We must be substantially more careful to prove an analogous statement for cell
spectra of finite type. To this end, we will need a process called “cell cancellation”.

Lemma 7 Let X be a k-connective motivic cell spectrum of finite (resp. bounded)
type. Then there exists an equivalent cell spectrum of finite (resp. bounded) type X 0

such that X 0 has no cells in dimension mC `˛, m< k.
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Proof: Let us first consider the finite type case. As remarked above, we may
assume X is constructed in ! steps. Let i be the first step in which one of the cells e
attached has dimension mC `˛, m< k (if no such i occurs, we are done). By (10),
the attaching map of e is homotopic to 0. Since we already remarked that attaching
cells can be interpreted as an operation in the motivic stable homotopy category, we
may assume (without changing the dimensions of the cells constituting X) that the
attaching map of e is actually 0. This gives us a map

SmC`˛!X: (11)

Let X1 be the homotopy cofiber of the map (11). Note carefully that X1 can be
constructed by following the construction of X while “omitting” the cell e, i.e.
that X1 is equivalent to a cell spectrum of finite type with cells of the exact same
dimensions as the cells of X with the exception of the cell e, which is omitted.

Now note however that by our assumption aboutX , the map (11) must be trivial,
i.e. we must have

X1 'X _S
mC1C`˛: (12)

We see then that by attaching a single cell of dimension

mC 2C `˛

to X1 whose attaching map is the injection to the second wedge summand (12),
we obtain a cell spectrum equivalent to X with cells in the exact same dimensions
except the cell e, which is replaced by a cell of dimension greater by 2.

By iterating this procedure, we clearly eventually eliminate all cells of dimen-
sion mC `˛, m< k.

In the bounded type case, the argument is identical. Limit steps, which are
required in this case, are filled in by taking direct limits. �

Lemma 8 Let X be a cell spectrum such that for every n, there exists a cell
spectrum Xn of finite type and an n-equivalence

Xn
�n

X : (13)

Then X is equivalent to a cell spectrum of finite type.

Proof: By an analogue of Whitehead’s theorem (which is true for formal reasons in
the present situation, cf. [7]), we get homotopy commutative diagrams of the form

Xn
�n

kn

X

XnC1:

�nC1
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It follows that an induced map

holim
�!

Xn!X

is an equivalence. Further, the homotopy cofiber of kn must be n-connective by
the assumption on �n. By Lemma 7, XnC1 can be obtained from Xn by attaching
finitely many cells in each dimension mC�˛, m� n. We deduce that

holim
�!

Xn

is a cell spectrum of finite type. �

Comment: There is no harm in turning around the arrows in the assumption (13):
If we assume instead we have an n-equivalence

X
f

Xn; (14)

by the Whitehead theorem, if we denote by X 0n�1 the cell spectrum of finite type
obtained from Xn by omitting any cells of dimension .� n/C�˛ and by

	 WX 0n�1!Xn

the canonical map, there exists a map (in the homotopy category) g W X 0n�1 ! X

such that
fg ' 	:

Further, 	 is an n� 1-equivalence, and hence so is g.
For completeness, we also note

Lemma 9 A homotopy cofiber of a map of k-equivalences is a k-equivalence, and
a homotopy direct limit of a sequence of k-equivalences is a k-equivalence.

Proof: For the first statement, consider a diagram of cofibration sequences

X

˛

Y

ˇ

Z

�

X 0 Y 0 Z0

C D E:

Then ˛ and ˇ are k-equivalences if and only if C;D are .k C 1/-connective. But
then E is .kC 1/-connective by the long exact sequence of homotopy groups. For
the second statement, simply note that isomorphisms and surjections are preserved
by direct limits of sequences. �
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3. Convergence

Lemma 10 1. The canonical map

S !HZ=p (15)

is a 0-equivalence.
2. For p D 2, the canonical map

S=.2;�/!HZ=2 (16)

is a 1-equivalence. For p > 2, the canonical map

	 W S=.p;�/!HZ=.p;�/'HZ=p_†HZ=p (17)

is a 1-equivalence.

Proof: To prove the first statement, the map (15) realizes in homotopy groups the
projection

KMW .F /!KM .F /=p

([13, 14]), which is of course onto.
To prove the second statement, for p D 2, we have

��˛.S=.2;�//DKMW .F /=.2;�/DKM .F /=2DHZ=2�˛;

and the isomorphism is induced by (16). Using the multiplicative structure of the
Milnor-Witt ring, to prove the onto part of the statement, it suffices to prove that the
generator

� 2 �1�˛HZ=2 (18)

lifts to
� 0 2 �1�˛.S=.2;�//Š Z=2: (19)

Now using the pushforward, it suffices to produce � 0 for the field F D Q. In that
case, we have

2Œ�1�D 0 2KM .Q/;

so
0¤ Œ�1� 2 Im.ˇ W �1�˛HZ=2! ��˛HZ/:

So we must have
Œ�1�D ˇ�:

Now note that in KMW ,
Œ�1�.2C Œ�1��/D 0;
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so
2Œ�1�D 0 2 ��˛.S=�/:

Thus, again, Œ�1� 2 ��˛.S=�/ satisfies

Œ�1� 2 Im.ˇ W �1�˛.S=.2;�/! ��˛S=�/;

and we can let � 0 be any element of �1�˛.S=.2;�// such that ˇ� 0 D Œ�1�.
For p > 2, this method works when F contains p’th roots of unity, but otherwise

the Tate twist device is not available. However, instead, we may proceed as follows.
Consider the diagram

S=.p;�/^HZ=p
�^HZ=p

HZ=.p;�/^HZ=p

S=.p;�/^HZ

Id^proj:

�^HZ
HZ=.p;�/^HZ:

Id^proj: (20)

By (9), the top row is a 1-equivalence, but by the fact that p annihilates the bottom
row, the verticals are homotopy retracts, so the bottom row is also a 1-equivalence.
Now the cofiber C	 is a cell spectrum of finite type such that

0D � W C	! C	:

Suppose C	 is k-connective but not kC 1-connective for some k. We have

�kC�˛C	D .�kC�˛C	/˝ZŒ�� ZD .�kC�˛C	/˝KMW
KMW =�DHZkC`˛C	:

(21)
Note that this is a “Künneth-like” argument, but we don’t have to discuss the
Künneth spectral sequence here; the kC�˛-homotopy groups of a smash product
of a k-connective spectrum X and a 0-connective spectrum Y is always to

�kC�˛X ˝KMW
�0C�˛Y

by the long exact sequence in homotopy groups.
Thus, by the fact that the bottom row of (20) is a 1-equivalence, we have k � 2,

as claimed. �

Lemma 11 For any k-connective motivic cell spectrum X (not necessarily of finite
type), XAd is k-connective.
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Proof: By Lemma 10 1. and Lemma 9,

X !X ^HZ=p (22)

is a k-equivalence for any k-connective cell spectrum X , and hence the homotopy
fiber X1 of (22) is k-connective. Iterating this construction by forming a fiber
sequence

XnC1!Xn!Xn ^HZ=p;

we obtain by induction that holim
 �
n

Xn is k-connective, and hence XAd , which is the

homotopy cofiber of the canonical map

holim
 �
n

Xn!X;

is k-connective. �

The following lemma is not strictly needed in full generality as a part of our
proof, but it is nice to note that we can prove it at this point.

Lemma 12 If X is a motivic cell spectrum of finite type, then the motivic Adams
spectral sequence converges for X ^HZ=p.

Proof: The statement is true for X D S by calculation, so it is true for a cell
spectrum with finitely many cells. Now let X.n/ be the cell spectrum obtained by
attaching the first n cells of X . Then by induction, the motivic Adams spectral
sequence converges for X.n/ ^HZ=p. Consider the diagram

X.n/ ^HZ=p
'
.X.n/ ^HZ=p/Ad

F

'

X ^HZ=p .X ^HZ=p/Ad

F .n/ X .n/ ^HZ=p .X .n/ ^HZ=p/Ad :

All the lines are cofiber sequences. By considering the bottom row and Lemma 11,
the connectivity of F .n/ goes to 1 with n, while it does not depend on n by the
middle row. Thus, F D F .n/ ' �, as claimed. �

Lemma 13 The spectrum .S=.p;�//Ad is very weakly equivalent to a cell spectrum
of finite type.
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Proof: The proof mimics the analogous statement in topology. Let us first consider
p D 2. In topology, this spectrum is known as the first Brown-Gitler spectrum B.1/,
and its Adams resolution is studied in [4], where it is shown that its connectivity (in
total degree) is increasing. In the motivic setting, a similar argument can be made
as follows.

Set
B� WDHZ=2�.S=.2;�//:

Then .HZ=2�;B�/ is a sub-coalgebroid (in particular a bi-comodule) of
.HZ=2�;A�/ via the map

B�! A� (23)

induced by the canonical map S=.2;�/!HZ=2. Define now J0 D A�, and define
inductively short exact sequences of right A�-comodules

0! Jm�A�B�! Jm! JmC1! 0

where the first map is the inclusion.
Claim: lim

!
Jm D 0, and

Jm�A�B� (24)

is isomorphic to a sum of copies of B�.

The proof is the same as in topology: For example, filter .HZ=2�;A�/ by pow-
ers of the augmentation ideal. Then the associated graded object .HZ=2�;E0A�/ is
a (commutative) Hopf algebra, and isomorphic, as a coalgebra, to the tensor product
of .HZ=2�;E0B�/ with another coalgebra (where E0B� is the associated graded
object of B� with respect to the filtration by powers of its augmentation ideal).
Therefore, the statement is true for the associated graded objects and hence also for
the original objects (one shows by induction on m that Jm.E0A�/DE0Jm).

Noticing further that J1 is concentrated in degrees .� 2/C�˛, the Claim implies
by induction that there exists a resolution

B� F0
d0

F1
d1

F2
d2

::: (25)

where Fi is a sum of copies of A� on a finite set Si of generators s in dimensions

ks D j C�˛; j � 2i: (26)

As usual, to a Hopf algebroid extended/free resolution of the type (25), we may
assign a tower of fibrations

XiC1!Xi !Ki (27)
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where

Ki '†
�i W

s2Si

†ksHZ=2; (28)

and
HZ=2�Xi DKer.di /; X0 D S=.2;�/:

Further, by standard arguments, up to equivalence,

holim
 �
n

Xn (29)

does not depend on the choice of the resolution (25). In particular, for a
suitable choice of resolution, (29) becomes .S=.2;�//Ad , and hence we expressed
.S=.2;�//Ad as a homotopy limit of a tower obtained by successively taking fibers
of maps into Ki , so by (26), (28), Lemma 8 and Lemma 12 applied to

X D†�i
W
s2S i

Sks ;

.S=.2;�//Ad is very weakly equivalent to a cell spectrum of finite type.
Now consider p > 2. In this case, the above argument actually applies with

B.1/ replaced by MZ=p (since �1 is in dimension .� 2/C `˛). Thus, MZ=pAd is
very weakly equivalent to a cell spectrum of finite type, hence the same is true with
MZ=p replaced by S=.p;�/, as .‹/Ad preserves cofibration sequences. �

Remark: Note that we have not proved (yet) that the motivic Adams spectral
sequence converges for S=.p;�/. However, we have the following

Lemma 14 For any 0-connective cell spectrum X of finite type,
1. The canonical map X=.p;�/! .X=.p;�//Ad is a 1-equivalence.
2. .X=.p;�//Ad is very weakly equivalent to a cell spectrum of finite type.
3. The canonical map

.X=.p;�//Ad ! ..X=.p;�//Ad /Ad

is a very weak equivalence.

Proof: 1. For X D S , the characterization of the homotopy type of .S=.p;�//Ad

as a homotopy inverse limit of maps into theKi ’s in the proof of Lemma 13, implies
that the canonical map

HZ=2! .S=.2;�//Ad
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for p D 2, and
HZ=p! .MZ=p/Ad

for p > 2 is a 1-equivalence. Therefore, the statement follows from Lemma 10.
Thus, by Lemma 9, the statement follows for the cell spectrum X.n/ obtained by
attaching the first n cells of X . Now consider the diagram

†�1X .n/ †�1.X .n//Ad

X.n/ .X.n//
Ad

X XAd

(30)

where the columns are cofibration sequences. By Lemma 11, for n � 0, the first
row is a map of 2-connective spectra, and hence is a 1-equivalence. We just proved
that the middle row is a 1-equivalence. Thus, the bottom row is a 1-equivalence by
Lemma 9.

2. Consider the right hand column of (30). The middle term is very weakly
equivalent to a cell spectrum of finite type by Lemma 13, while the connectivity of
the top term goes to 1 with n by Lemma 11. Thus, our statement follows from
Lemma 8.

3. Using Lemma 11 again, it suffices to prove the statement for X D S . we go
back to the model

.S=.p;�//Ad D holim
 �
n

Yn

where Yn are the cofibers
Xn! S=.p;�/! Yn

(see (27)). The Yn’s are obtained by taking successive fibers of maps into the spectra
Ki of increasing connectivity. Since the motivic Adams spectral sequence converges
for Ki by (a special case of) Lemma 12, it converges for Yn. Since the connectivity
of the Xn’s goes to1 with n, our statement follows from Lemma 11. �

Remark: Note that since X=.pM ;�N / may be represented by a motivic spectrum
with a finite filtration where the associated graded pieces are X=.p;�/, all the
statements of Lemma 14 remain valid with X=.p;�/ replaced by X=.pM ;�N /.

Lemma 15 Let X be a cell spectrum of finite type and suppose there exists an N
such that

pN D �N D 0 WX !X: (31)
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Then the motivic Adams spectral sequence converges for X .

Proof: Suppose without loss of generality thatX is 0-connective. Using (31), there
exists an M1, N1 such that

X=.pM1 ;�N1/'X _†X _†1C˛X _†2C˛X: (32)

(ChoosingM1 �N makesX=pM 'X_†X . By choosing another, possibly larger,
numberN1, 0D �N1 WX=.pM1/!X=.pM1/.) Then by Lemma 14 1., the canonical
map

X=.pM1 ;�N1/! .X=.pM1 ;�N1//Ad DXAd=.pM1 ;�N1/ (33)

is a 1-equivalence, while by Lemma 14 2., the right hand side is very weakly
equivalent to a cell spectrum of finite type, for which, further, the motivic Adams
spectral sequence converges by Lemma 14, 3. Thus, the fiber X1 of (33) is 1-
connective, and satisfies again the conditions of Lemma 15.

Therefore, by iterating this procedure, for any chosen k, we may construct a
wedge X 0 of X and some suspensions of the form †.�1/C`˛X such that

X 0! .X 0/Ad (34)

is a k-equivalence. But a wedge summand of a k-equivalence is a k-equivalence, so

X !XAd

is also a k-equivalence for any k, and hence a very weak equivalence. �

Our next step is proving an analogue of Lemma 23 of [9]. Because we are no
longer working over an algebraically closed field, it is more involved, and we need
some preliminary steps.

Lemma 16 Suppose X is a motivic spectrum over F , and

X D holim
 

Xs

where each motivic spectrumXs is of bounded type with the same bounds .Mm/m2Z.
Assume one of the following conditions hold:

1. There exists a prime p > 2 and a number N 2N such that

0D pN WXs!Xs

for each s. Further, �1 is a sum of squares in F , and cdp.F / <1.
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2. There exists an N 2N such that

0D 2N D Œ�1�N WXs!Xs

For each s. Further, cd2.F Œi �/ <1.

Then there exists a very weak equivalence

Y !X

where Y is a cell motivic spectrum of bounded type.

Proof: By induction on i , we will construct an i-equivalence

Yi !X (35)

where Yi is a cell spectrum of bounded type and there exists a number Ni 2N such
that

0D pNi W Yi ! Yi (36)

in Case (1) and
0D 2Ni D Œ�1�Ni W Yi ! Yi (37)

in Case (2).
If k is such that Mm D1 for m � k, we may put Yk WD �. Now suppose (35)

has been constructed for a given i . Let XiC1 be the homotopy cofiber of (35). Then

�mC`˛XiC1 D 0 for m� i :

Furthermore,
XiC1 D holim

 �
n

XiC1;s

where the motivic spectra XiC1;s are .i C 1/-connective, bounded below with the
same bounds, and annihilated by the same power of p in Case (1), and the same
power of 2, Œ�1� in Case (2).

Now note however that the condition (1) implies that for each k 2 N, there
exists an M 2 Z such that

�`˛MZ=.pk/D 0 for ` <M (38)

and condition (2) implies that for each k 2N there exists an M 2 Z such that

�`˛S=.2
k;Œ�1�k/D 0 for ` <M: (39)
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By Lemma 7, then, there is an M 2 Z such that

�iC1C`˛XiC1;s D 0 for ` <M .

Hence,
�iC1C`˛XiC1 D 0 for ` <M .

Thus, by attaching cells of dimension i C 1C `˛, ` � M , to XiC1, we may kill
�iC1C�˛XiC1. Further, the attaching map will factor through the smash product
with MZ=pK for some K in Case (1), and with S=.2K1 ;Œ�1�K2/ with some K2 >
K1 > 0 (since smashingXiC1 with such spectra will produce a wedge sum of copies
of XiC1).

Composing these attaching maps with the connecting map †�1XiC1 ! Yi of
(35) and taking homotopy cofiber produces YiC1. �

Now consider the homotopy category C of all motivic cell spectra (not neces-
sarily of finite type) where equivalence is weak equivalence. This is a triangulated
category. Further, we have a t-structure on C associated with the “homology theory”
��C�˛: For a cell spectrum X , we construct a map

X ! ��kX (40)

by attaching cells inductively to kill all homotopy groups of dimensions `Cm˛,
` > k. The fiber of (40) is denoted by �>kX . By obstruction theory,

Œ�>kX;��kY �D 0 for any X;Y ,

which is the key property required for getting a t-structure. (Note that this
is substantially more restricted than the t-structure on the entire motivic stable
homotopy category, constructed by Morel [14].) Now also for formal reasons, the
heart of our t-structure can be identified with the subcategory of C consisting of cell
spectra X such that �kC`˛X D 0 for k ¤ 0.

Proposition 17 The heart C0 of the t-structure defined above is equivalent to the
category of graded KMW .F /-modules.

Proof: Let X be an object in the heart. Then clearly ��X D �0C�˛X is a graded
KMW .F /-module. Let

F1
i

F0 ��X 0 (41)

be a presentation of ��X where F0, F1 are free KMW .F /-modules. Clearly, we
may realize i as a 2-stage cell spectrum X 0, which is the cofiber of

W
j

Smj˛
I W

i

Spi˛: (42)
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Also automatically, we obtain a map

X 0!X

inducing isomorphism in �0C�˛, so clearly we have an equivalence

��0X
0 'X:

Since X 0 only depends on ��X , (and since also every KMW .F /-module can be
realized in this way), we have shown that there is precisely one object in the heart
for eachKMW -module. By a similar argument, clearly any morphism ofKMW .F /-
modules is realized by a morphism in the heart and any morphism which induces 0
on ��˛ factors through a cell spectrum with homotopy groups in dimensions kC`˛
for k > 0 only, and hence is 0. �

Lemma 18 Let M 2ObjC0 and suppose that either

p > 2, �1 is a sum of squares in F , cdp.F / <1
and 0D pN WM !M

(43)

or
cd2.F / <1 and 0D 2N D Œ�1�N WM !M . (44)

Then M is equivalent to a cell spectrum of bounded type.

Proof: The point is we may form a “resolution” of the form

Fi !Mi !MiC1 (45)

where M0 D M , Fi ;Mi 2 Obj.†iC0/, the first map in (45) is surjective on
homotopy groups and such that †�iFi is a direct sum of copies of

KMW =p
N (46)

in Case (43) and of
KMW =.2

N ;Œ�1�N / (47)

in Case (44). Thus, it suffices to prove the statement for (46) in Case (43) and (47)
in Case (44).

The idea now is to apply Lemma 16 to X of the form (46) resp. (47), Xs D
X=�s . The spectra Xs can be constructed can be constructed by taking finitely
many cofibers of (suspensions of) copies of KMW =.�;p/DKM=p.

Thus, it suffices to show that KM=p is of bounded type. For p D 2, we have a
cofibration

†1�˛HZ=2!HZ=2!KM=2
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(the first map being the Tate twist), so this follows from HZ=2 being of finite type.
For p > 2, cdp.F / <1 and the Bloch-Kato conjecture [18] imply that there exists
an N 2 Z such that HZ=pmCn˛ D 0 for mC n < N . It follows that constructing
KM=p fromHZ=p by killing off homotopy groups �kC�˛, k � 1 by attaching cells
in the category of (rigid)HZ=p-modules produces a finite typeHZ=p-module and
hence a finite type (motivic) spectrum. �

Lemma 19 Let X be a motivic spectrum of bounded type over F , and suppose one
of the following conditions holds:

p > 2, �1 is a sum of squares in F , cdp.F / <1
and 0D pN WX !X

(48)

or
cd2.F / <1 and 0D 2N D Œ�1�N WX !X . (49)

Then ��X is of bounded type.

Proof: The strategy is to consider the canonical (co)fibration sequences

��iC1X ! ��iX ! Yi

and notice that by induction on i , ��iX satisfy the assumptions of this Lemma,
while Yi satisfy the assumptions of Lemma 18. (Start with i D k where X is k-
connective.)

Next, notice that by our assumptions, the fact that ��iX is of bounded type and
by Lemma 7, for each i there exists an Ni such that �iC`˛��iX D 0 for ` < Ni . �

Lemma 20 When p > 2, �1 is a sum of squares in F and cdp.F / <1, or p D 2
and (4) holds, the canonical map

‰ WMZ=p! holim
 �
n

.MZ=p/=�n (50)

is a very weak equivalence.

Proof: Similarly as in [9], the fiber F‰ of ‰ is the homotopy inverse limit of

::: †.kC1/˛MZ=p
�

†k˛MZ=p ::: : (51)

Let us first assume that p > 2. Then, by [18], there exists a constant N such that

.KM .F /=p/n D 0 for n > N . (52)

Then we will prove that for all q 2 Z there exists an `� 0 such that

�q†
k˛MZ=p D 0 for k � `; (53)
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hence proving our statement, since this implies

lim
 
�q†

k˛MZ=p D lim
 

1�q†
k˛MZ=p D 0:

In effect, by Lemma 19, ��MZ=p is of bounded type, which implies (53).
To treat the case when p D 2 and (4) is satisfied, first observe that by Lemma

19 applied to X D S=.p;Œ�1�/

��C�˛.F‰=Œ�1�/D 0:

Therefore,

Œ�1� W ��C�˛.F‰/! ��C�˛.F‰/

is an isomorphism. Since an isomorphism of these groups is also induced by �, the
same is true for Œ�1��2, but Œ�1��2 D 0 2 KMW .F /=2: Thus, ��C�˛F‰ D 0, as
claimed. �

Comment: It may seem that in the case p D 2, condition (4) could be replaced by a
weaker condition, replacing Œ�1� by any element (or sequence of elements) which,
when multiplied by �, become nilpotent in KMW =2. Note however that by Morel’s
structure theorem (6) [14, 13],

KMW =2D W=2 in dimensions .� 0/˛
I n=2 in dimensions .� 0/˛

where I is the augmentation ideal of the Witt ring. (In (6), I�n=I�nC1 Š .KM /n=2,
so modulo 2, the right hand leg of the pullback becomes an isomorphism.) Thus,
an element ˛ annihilates � in KMW =2 if and only if ˛ represents an element of W
which is divisible by 2. But 2D Œ�1� 2W , so this means that ˛ is divisible by Œ�1�,
showing that essentially no further generalization is meaningful.

Lemma 21 Let X be a motivic cell spectrum of finite type, and let either p > 2,
cdp.F / <1 and �1 be a sum of squares in F or p D 2 and F satisfy the condition
(4). Then for any k, the canonical map

X=pk! holim
 �
n

X=.pk;�n/

is a very weak equivalence.
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Proof: Let, again, X.m/ be the spectrum obtained by attaching the first m cells of
X . Consider the diagram of cofibration sequences

X.m/=p
k ' holim

 �
n

X.m/=.p
k;�n/

F

'

X=pk holim
 �
n

X=.pk;�n/

Fm X .m/=pk holim
 �
n

X .m/=.pk;�n/:

The top row is an equivalence by Lemma 20. The connectivity of Fm goes to 1
withm by considering the bottom row, but does not depend onm by considering the
middle row. Thus, F D Fm ' �, as claimed. �

Proof of Theorem 1: The first statement follows directly from Lemma 15. The
second statement follows then from Lemma 21. �
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