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1. INTRODUCTION

The homotopy limit problem for Karoubi’s Hermitian K-theory [25] was
posed by Thomason in 1983 [48]. There is a canonical map from alge-
braic Hermitian K-theory to the Z/2-homotopy fixed points of algebraic
K-theory. The problem asks, roughly, how close this map is to being an
isomorphism, specifically after completion at 2. In this paper, we solve this
problem completely for fields of characteristic O (Theorems 16, 20). We
show that the 2-completed map is an isomorphism for fields F of character-
istic 0 which satisfy cd,(F[i]) < oo, but not in general.

The main ingredient of our method is developing G-equivariant motivic
stable homotopy theory for a finite group G. Our particular emphasis is
on G = Z/2, and on developing motivic analogues of Real-oriented homo-
topy theory along the lines of [18]. Karoubi’s Hermitian K-theory can be
shown to be a Z/2-equivariant motivic spectrum in our sense. This can be
viewed as an algebraic analogue of Atiyah’s Real KR-theory [1]. Viewing
Hermitian K-theory in this way is crucial to our approach to the homotopy
limit problem, as the solution uses a combination of equivariant and motivic
techniques (such as the Tate diagram and the slice spectral sequence).

There are other benefits of equivariant stable motivic homotopy theory,
such as constructions of interesting motivic analogues of other Real-oriented
spectra, notably a motivic analogue MGLR of Landweber’s Real cobor-
dism E-ring spectrum MR ([30, 18]). Applying “geometric fixed points”
to MGLR also allows the construction of a motivic analogue of the non-
equivariant spectrum MO, which was a question asked by Jack Morava.
These constructions however lead to many new open questions, and a thor-
ough investigation of these new motivic spectra will be done in subsequent
papers.

Hu was supported by NSF grant DMS 0503814. Kriz was supported by NSA grant H
98230-09-1-0045. Ormsby was supported by NSF RTG grant DMS 0602191.
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To present our results in more detail, we need to start with the foundations
of G-equivariant motivic stable homotopy theory, which in turn requires
unstable G-equivariant motivic homotopy theory. We work over fields of
characteristic 0. In the unstable case, there are foundational notes [49], but
our motivation is somewhat different. In [49], a part of the motivation is to
be able to take quotient spaces, with the particular example of symmetric
products in mind (which, in turn, is needed in studying motivic Eilenberg-
MacLane spaces). In the present paper, we do not focus on taking quotients
with respect to the group G, but are instead more interested in taking fixed
points, which is closer to the context of G-equivariant (stable) homotopy
theory of spaces. Because of this, we may stay in the category of (separable)
smooth G-equivariant schemes, and we can take more direct analogues of
the definitions of Nisnievich topology and closed model structure in the
non-equivariant case.

When stabilizing, however, an important question is what is the “sphere-
like object” we are stabilizing with respect to, as clearly several potentially
natural choices may arise. The answer we give in this paper is to stabilize
with respect to the “one-point compactification” T of the regular represen-
tation A of the group G. Again, we can then mimic most the construction
of the motivic stable homotopy category in the non-equivariant case, as pre-
sented, for example, in [22].

In equivariant stable homotopy theory, the basic tools [33] are the Wirthmiiller
isomorphism (i.e. equivariant stability with respect to finite G-sets), Adams
isomorphism and the Tate diagram. We give here motivic analogues of these
tools at least in the basic cases. One of the important features of the theory
is that the correct motivic analogue of the free contractible G-CW complex
EG 1n this context is again the simplicial model of EG (rather than other
models one could potentially think of, such as EG,,, cf. [40]).

As mentioned above, our first main application is a presentation of Karoubi’s
Hermitian K-theory as a Z/2-equivariant motivic spectrum KR“¢ in our
sense. For G = Z/2, we find that T decomposes to a smash product of four
different 1-spheres, namely S I'and S* = G,, with trivial action, and S?,
which is a simplicial model of S! with the sign involution, and $”%, which
is GL%, i.e. G, with the involution z > 1/z. Generalizing the methods of
Hornbostel [15], we prove that we indeed have a Z/2-equivariant motivic
spectrum KR which enjoys three independent periodicities, namely with
periods @ + vy, 4 — 4y, 1 + ya (the first two of which are essentially proved
in [15]).
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Using this machinery, we prove that the inclusion ¢ : $® — S? is homo-
topic to 7 : S¢ — S in the coefficients of KRS, which answers a question
of Hornbostel [15]. It also gives one form of an answer to the completion
problem for Hermitian K-theory: we prove that the Borel cohomology of
Hermitian K-theory is its completion at 7. However, one may ask if Her-
mitian K-theory coincides with its Borel cohomology when completed at 2
(there are many partial results in this direction, e.g. [28, 5, 7]). We show
that this is false for a general field, but is true for characteristic O fields
satisfying cd,(F[i])) < co. Examples include fields of finite transcendence
degree over Q, and R.

The other main focus of the present paper is a Z/2-equivariant motivic
spectrum MGLR which is an analogue of Landweber’s Real cobordism
MR. The existence of such a spectrum is strongly motivated by Hermit-
ian K-theory. We construct such a spectrum, and further show that it is
a //2-equivariant motivic E, ring spectrum. There are many interesting
implications of this fact. Taking geometric fixed points for example gives
a motivic analogue of unoriented cobordism, which answers a question of
Jack Morava. Even more interestingly, however, there is a theory of motivic
Real orientations, analogous to the theory of [18]. A motivic Real orienta-
tion class occurs in dimension 1 + ya, and is present both for motivic Real
cobordism and for Hermitian K-theory. Further, a motivic Real orientation
gives a formal group law, and hence a map from the Lazard ring to the
coefficient ring. In the case of MGLR, one can then use this to apply the
constructions of [10] to construct motivic analogues of the “Real spectra
series” of [18], including, for example, motivic Real Johnson-Wilson spec-
tra and motivic Real Morava K-theories. It is worthwhile remarking that
one therefore has the ability to construct motivic analogues of the various
spectra which figure in Hill-Hopkins-Ravenel’s recent paper on the non-
existence of Kervaire invariant one elements [14], although the exact role
of these Z/2-equivariant motivic spectra is not yet clear.

The present paper is organized as follows: Foundations of unstable and
stable G-equivariant motivic homotopy theory in our setting are given in
Section 2. The Wirthmiiller and Adams isomorphisms and the Tate dia-
gram are presented in Section 3. The work on Hermitian K-theory and the
completion problem is in Sections 4 and 5. The results on motivic Real
cobordism are in Section 6.

Acknowledgements: We are indebted to Jens Hornbostel, Marco Schlicht-
ing and Rick Jardine for highly valuable discussions. We also note that since
the present paper was written, the validity of our solution of the homotopy
limit problem for Hermitian K-theory has been extended [47, 6].



4 PHU, I.LKRIZ, K.ORMSBY

2. THE FOUNDATIONS OF EQUIVARIANT STABLE MOTIVIC HOMOTOPY THEORY

2.1. The site. Throughout this paper, we shall work over a base field k of
characteristic 0. We begin with the foundations of equivariant unstable mo-
tivic homotophy theory. Our definitions are different from those of [49].
The main reason is that, similarly as in developing equivariant stable homo-
topy theory in topology, our emphasis is not on the functor of taking quo-
tient by the action of the group, but rather on taking fixed points. Therefore,
we gear our foundations toward making fixed points (rather than quotients)
behave well.

In this paper, we will consider the site S(G)y;; of G-equivariant sepa-
rated smooth schemes over k with the Nisnievich topology, where G is a
finite group. In our definition, the covers in the G-equivariant Nisnievich
topology are G-equivariant étale maps f in which for each point x (in the
étale sense) with isotropy group H C G, there exists a point in f~!(x) with
the same residue field and the same isotropy group. Note that for such X,
X% is smooth closed: to show X¢ is smooth, consider an affine cover (U;)
of X. Then

ey) (N gl

geG

is a cover of X by open affine sets in X (because X is separated). In this
setting, we have Luna’s slice theorem [34], which shows that taking G-fixed
points in each of the sets (1) gives a closed smooth subscheme.

By the category of based G-equivariant motivic spaces we shall mean
the category A% — Sh.(S(G)yis) of pointed simplicial sheaves on the site
S (G)wis-

It may be worthwhile to point out that this category passes a trivial but
important test: it captures arbitrary G-sets. In effect, recall that the category
of G-sets and G-equivariant maps is equivalent to the category of presheaves
(of sets) on the orbit category Orb(G), i.e. the category of transitive G-sets
and equivariant maps. For a G-set S, the presheaf on Orb(G) is

G/H — S,
and for a presheaf F on Orb(G), the corresponding G-set is
G/?Xome) F

where G/? is considered as a covariant functor Orb(G) — G-sets.
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It worth pointing out however that some constructions which are obvi-
ous on G-sets actually require a moment of thought on G-equivariant mo-
tivic spaces as defined here. For example, the forgetful functor from G-
equivariant motivic spaces to H-equivariant motivic spaces, H C G, is
obtain by restricting the sheaf to GXy? where the variable ? indicates an
H-equivariant separated smooth scheme.

On the other hand, for a normal subgroup H of G, the G/H-equivariant
motivic space X is modelled simply by restricting X to H-fixed schemes.

On this category, we can put a closed model structure as follows (this is
the original, now called “injective”, model structure which Joyal described
in his 1984 letter to Grothendieck, see also Jardine [23]): The (simplicial)
equivalences are local equivalences in the sense of [49], i.e. maps of pointed
simplicial sheaves F, — F. which induce an isomorphism on 7, and for
each local section u of Fj, an isomorphism on m;(?,u). Here n; are the
sheaves associated with the presheaves of homotopy groups (sets for i = 0)
of the simplicial sets obtained by taking sections of the argument over a
given object of the site.

The cofibrations are simply injective maps on sections; as usual, this
specifies fibrations as morphisms satisfying the right lifting property with
respect to acyclic cofibrations.

The A'-model structure is obtained by localizing with respect to projec-
tions
X AA, — X for X € ObjA?? — S h.(S (G)yis)-
The homotopy categories of the simplicial (resp. A'-) model structures on
A% — S h.(S(G)yis) will be denoted by hy(G), h,(G), respectively.

Lemma 1. Let V be a G-representation and X € Sh.(S(G)yis). Then the
projection

2) T: XAV, > X

is an A'-equivalence.

Proof: (2) has an “A'-homotopy inverse”, namely the zero-section map
q: X—->XAV,.
We have g = Idx, and there exists an “A'-homotopy”
h:AMAXAV, XAV,

where h(0,u) = u, h(1,u) = grm. Under such circumstances, 7 and g are
inverse in the A'-homotopy category for formal reasons. O



6 PHU, I.LKRIZ, K.ORMSBY

2.2. Stabilization. The first question in equivariant stable homotopy the-
ory always is what to stabilize with respect to. In this paper, we stabilize
with respect to the “one point compactification of the regular representa-
tion”. For an affine space V, denote the corresponding projective space by
P(V). Then we put

3) SV = P(VeA)/PV).
Next, put
) Te = S4°

The category of equivariant motivic spectra is then defined analogously as
in [22]: By Tg-spectra (or simply G-equivariant motivic spectra or G-A'-
spectra) we shall mean sequences (X,,) of based motivic G-spaces together
with structure maps

(5) —l]—G/\XI’l _)Xl’l+1'

Morphisms of spectra are just morphisms in the category of diagrams formed
by the objects X,, and morphisms (5).

Similarly as in Jardine [22], to make the construction work, we need the
following result:

Lemma 2. The switch

(6) T, : TacATcATg > T AT ATg

induced by the cyclic permutaiton o of 3 elements is G-equivariantly A'-
homotopic to the identity.

Proof: We shall construct a G-equivariant linear A!'-homotopy between

(7) 1d, T, : N — NC.

This can be accomplished by taking /d,c and tensoring it with a sequence
of elementary row operations converting the matrix

010
0 01
1 00

1 00
01 0].
0 01

Now (6) can be identified as a “one point compactification” of T, in (7),
a notion made precise in the standard way using resolution of singularities
(cf. [20]). m]

to
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The level-wise model structure on G-equivariant motivic spectra is de-
fined so that

(X)) = (Yn)
is a fibration, resp. equivalence if and only if each of the constituent maps
X, > Y,

is a fibration, resp. equivalence in the A'-closed model structure on based
motivic G-spaces. Cofibrations are defined as maps satisfying the left lifting
property with respect to acyclic fibrations.

Letting
Jx: X = JX

be natural level-wise fibrant replacement, the stable model structure has as
equivalences (called stable equivalences) maps

g: X—-Y

where

QrsJ(8) : Qg X — Qv JY
is a level-wise equivalence where Oy, is stabilization with respect to shift
suspension X7 _.The shift suspension is defined by

(% X), =T A X,

and the structure maps are

To AT AXy) ——=Tg AT AX,) —> TG A Xper.

where T is the map switching the two T coordinates and the second map
is Idy, smashed with the structure map of X.

If we denote by €} the right adjoint to the functor X7 , then the functor
Or,, 1s defined as

. m m
lim QTG ZTG .

Now in the stable model structure, cofibrations are cofibrations in the level
structure, and fibrations are maps satisfying the right lifting property with
respect to cofibrations which are (stable) equivalences. One proves simi-
larly as in [22] that this does define a closed model structure.

Unless explicitly mentioned otherwise, by equivalence of G-A'-spectra
we shall mean a stable equivalence.
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2.3. Functors. There are many interesting functors in equivariant motivic
homotopy theory which are defined in an analogous way to functors from
topology. We will mention only a few examples which we will need here
specifically.
There is a suspension spectrum functor

T : G-A'-based spaces — G-A' — spectra,
left Quillen adjoint to

QY : G-A'-spectra — G-A'-based spaces.
There is also a “push-forward functor”

(?) fixea Al-spectra - G- Al-spectra
where one puts
(Efixed)n = SnAG A E,

where AG is the reduced regular representation of G. (One uses the fact that

we have a canonical isomorphism A® @ A! = A®.) Then the functor (?) fixed
is left Quillen adjoint to the fixed point functor

(MY : G-A'-spectra — A'-spectra.
Another example of a functor in which we will be interested is, for a based
G-A'-space X and a G-A!-spectrum E, the G-A!-spectrum
XANE
which is given by
(XANE), =XNE,,
with structure maps induced from those of E.

A particularly interesting case is the case when X = G,. In this case, we
can actually also consider the functors

FI[G,?),Gx?: A'-based spaces — G-A'-based spaces

which are the right and left adjoint, respectively, to the functor (?),,; which
forgets G-structure (=the right and left Kan extension). There are also anal-
ogous functors with spaces replaced by spectra. We will need

Lemma 3. The adjunction between F[G, ?) and (7). on the level of spaces
or spectra is a Quillen adjunction.

Proof: It is obvious that (?),,, preserves equivalences as well as cofibrations,
which implies the statement. O
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2.4. Equivariant motivic symmetric spectra. The category of G-equivariant
motivic symmetric spectra for G finite will be needed in the last section,
where we will need a formalism for establishing E.-ring structure on the
motivic real cobordism spectrum. The required category of symmetric spec-
tra is obtained by combining the methods of Mandell [35] and Jardine [22].

One defines a G-equivariant motivic symmetric spectrum X as a G-A'-
spectrum

X =(X,)
together with symmetric group actions
(8) T, xX, > X,
such that the structure map
(Te)"" A Xy = Xpin

is (X, X X,)-equivariant. A morphism of G-equivariant motivic symmetric
spectra is a morphism of G-equivariant motivic spectra which is equivariant
with respect to the symmetric group actions (8).

Following Jardine [22], one defines a stable closed model structure on G-
equivariant motivic symmetric spectra as follows: Stable fibrations are sim-
ply morphisms which are stable fibrations on the underlying G-equivariant
motivic spectra. Stable equivalences are maps f : X — Y of G-equivariant
motivic symmetric spectra where for every W an injective stably fibrant
G-equivariant motivic symmetric spectrum,

f*: hom(Y, W) — hom(X, W)

is an equivalence of simplicial sets. Here an injective fibration is a map
which satisfies the right lifting property with respect to all maps which are
level-wise cofibrations and level-wise equivalences. An injective object is
an object X such that the map X — * where * is the terminal object is an
injective fibration. (This is a precise equivariant analogue of the discussion
on p.509 of [22].) Recall here that the simplicial set

hom(X, Y)
is defined by
(hom(X, Y)), = hom(X A AL, Y),

where hom is the ordinary categorical hom-set, and A" is the standard sim-
plicial n-simplex. Stable cofibrations are simply maps which satisfy the left
lifting property with respect to acyclic stable fibrations.
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3. THE WIRTHMULLER AND ADAMS ISOMORPHISMS
3.1. The Wirthmiiller isomorphism.

Theorem 4. (The Wirthmiiller isomorphism) If E is an A'-spectrum, then
there is a natural equivalence

) F[G,E)~G~E.

Proof: We will prove that G=? is right adjoint to the functor (?),, in the
homotopy category, whence our statement will follow by uniqueness of ad-
joints. (Note that the functor (?),,; preserves equivalences.)

First note that choosing an embedding

G C A®
yields a Pontrjagin-Thom G-map
t:Tg - A°/(AC - G) ~G, ATg,

in other words,
t:Tg—> G ATg,

or, stably,

(10) t:8°>G,.

We define the unit to be, for a G-A!-spectrum E,

(11) n:i=tANld:E— G, NE=G=xE,.

Let us, for the moment, not worry about whether this functor preserves
equivalences; if we define both unit and counit on the “point set level” (i.e.
before passage to homotopy categories), and prove the triangle identities in
the homotopy categories, this will follow.

Let, then, the counit be defined, for an A'-spectrum E, as the map

(12) €:(G=E), —E

gotten by noticing that non-equivariantly, G > E is just a wedge sum of |G|
copies of E, and taking Id on the copy corresponding to e € G, and the
collapse map to the point on the other copies.

To verify the triangle identities, let us first look at “R — RLR — R”
(where R, L stands for right and left adjoint). One has an isomorphism

(13) Gx(GxE),=(GXxG)~E,
which allows us to write our composition as
(14) G*E->G,AN(GxE)=2(GXG)=E —>GxE

where the last map is obtained by observing that (G X G) < E is a wedge
of G copies of G >~ E, and taking the identity on the copy corresponding to
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e € G, and collapsing the other copies to the base point. In these terms,
the composition of the first two maps is identified just with a “multplication
by |G|” map, i.e. with the map (11) interpreted non-equivariantly as a map
$% — |G|,, smashed with identity on G = E. We see that the composition of
these two maps is the identity.

Let us now consider “L — LRL — L”. Clearly, however, this map is just
the composition

Ei) = |Gli A E) > Epy

where the first map is the “multiplier map” and the second map is again the
map which is identity on the wedge copy corresponding to e, and collapse
to the base point on the other copies. Clearly, again, this is homotopic to
the identity. O

Corollary 5. When f : E — F is an equivalence of G-A'-spectra, then
X ANf: Xy NE—> X, ANF

is an equivalence of G-A'-spectra when X is the pushforward of a simplicial
G-set S. where S, is a free G-set for all n.

Proof: We claim that the case X = G follows directly from Theorem 4. In
effect, the Theorem implies that G<? preserves equivalences, and we have
the natural isomorphism

GNE{L)}:G_'_/\E

which proves the statement. Thus, the statement follows by induction on
simplicial skeleta, and by preservation of equivalences by direct limits of
sequences of cofibrations (which is true for model structures which are left
proper [13] - an axiom satisfied for the Nisnievich topology and generalized
to the present equivariant context in a straightforward way). O

3.2. The Adams isomorphism.

Lemma 6. Let EG, be the simplicial n-skeleton of EG. Then there exists a
G-set S and an inclusion of vector bundles

(15) ® : AY x; EG,, — A X BG,.

Proof: We choose as an equivalent model of A® X EG,, the G-A!-space
(16) B((A° X6 EG,)°, A%, 1)
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where (?)° denotes barycentric subdivision, A is the simplicial category (we
write the two-sided bar construction so that the first coordinate is covariant
and last contravariant) and A is the standard cosimplicial object

(B = {(0r o) € N )i = 1)

(the “algebraic model” of the standard simplex cosimplicial object).
Now let
S — Gn+1
A, g1, .. 81) = (0,...,0,v,0,...,0),
~——
k
and define a map from (16) to AS by

k
(W0, s W), [0, s s8]) 1= ) i)
i=0

where 0 D ... D oy are simplices in EG,; and
wW; (= V; Xg 0.

Then ¢ is the first coordinate of (15), the second coordinate being just the
projection to
B((BG,)", A%, I\).

Lemma 7. Let E be a G-A'-spectrum. Then there exists a natural (stable)
equivalence

Yn : EGyi Ag E—— (EG,, NE)°.
(The source is the simplicial n-skeleton of B,(E,G,,S°).)

Proof: Consider the G-equivariant inclusion

EG, = A% x; EG, —> AS x BG,

induced by the natural inclusion
G C A°.

Pull back via

G, := B(G,G,G) — B(G,G, *), = EG,,
we get
(17) G, c A% x5 G, > AS X B(x,G,G), € S¥ A B(*,G,G),s.
Factoring out the complement of the image in (17), we get

(18) S¥ A B(,G,G),. — S¥ AG,.
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(Note that the pullback of a trivial vector bundle is trivial.) Applying ? Ag E
to (18) gives

S¥ NEG,. A6 E — S¥ AEG,. AE.
Delooping by S#°, we get
EG,, A E — EG,, AE.

The source is a pushforward of a fixed spectrum, so (?)° can be applied to
the target. This is, by our definition, i,,.

This map is an equivalence, since on the cofiber of the map from the k-
skeleton to the k — 1-skeleton of EG,., we get a wedge of suspensions of
the Wirthmiiller isomorphism

F(G1, E)® = (G A E)°.
O

The map ¢, depends on n, but clearly remains the same up to homotopy
if we replace the map ® of Lemma 6 by a map homotopic through inclu-
sions of vector bundles. Similarly, we clearly obtain a homotopic map if
we replace the set S by § € S’ without altering the inclusion ®. Then the
usual “Milnor trick” shows that by enlarging S to S LI §, we can make any
two inclusions ® of Lemma 6 homotopic: On the level of AS, first apply a
linear homotopy moving the first S coordinates to the last, and then a linear
homotopy between one choice of @ using the first S coordinates and an-
other choice of ® using the last S coordinates. Thus, ¢, restricted to the
n-skeleton of EG coincides with ¢, up to homotopy, and we get

Theorem 8. (The Adams isomorphism) For E a G-A'-spectrum, there exists
a natural A'-equivalence

W :EG, A E—> (EG, N E)°.

3.3. The Tate diagram. Similarly as in the topological context [12], con-
sidering the cofibration

EG+—>SO—>E‘(/;,
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for a G-equivariant motivic spectrum E we now may consider the diagram
with rows cofibration sequences:

EG, NE E EGAE
19 | | |
EG, NE —> F(EG,,E) J5

where -

E =EG A F(EG,,E)
is the Tate spectrum (note that the canonical map EG, A E — EG, A
F(EG,, E) is an equivalence by Corollary 5). By the Adams isomorphism,
taking G-fixed points, we obtain a diagram with rows cofibration sequences:

EG. NG E EC O°FE

w

EG, A¢ E— F(EG,,E)° — [G.
Either diagram (19) or (20) is referred to as the Tate diagram.

It is worth commenting on the functor ®CE, which, in accordance with
the terminology of [33], we call geometric fixed points. Noting that
(21 (Te)? =P,

and using arguments similar to [33], we may compute, for a G-equivariant
motivic spectrum E given by

(22) —I]—G A En - En+la

the geometric fixed points by taking G-fixed points on both sides of (22),
including Ts: we let

((I)GE)H = (En)Ga
and make the structure maps (recall (21))

(23) P'A(ED® = (En)C.

4. 7 ]2-EQUIVARIANT REPRESENTABILITY OF HERMITIAN K-THEORY

4.1. Z/2-equivariant dimensions. For the remainder of the paper, we will
focus on G = Z/2. In this section, we will generalize the results of Horn-
bostel and Hornbostel-Schlichting [15, 16]. Let us first make some remarks
on the “dimensions” which occur for Z/2-equivariant motivic spectra. We
have an equivariant factorization

(24) A2 = AVl
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where A! has trivial Z/2-action and Al has Z/2-action where the generator
acts by —1. Next, (24) induces an isomorphism

(25) Tzp =P APL

We give P! the base point co. In (25), P' has trivial Z/2-action, while on
P!, the generator of Z/2 acts by multiplication by —1.

Next, however, we recall that by the basic Nisnievich square [40], P! and
P! decompose further. In effect, if we denote by S! resp. S the simplicial
circle resp. G,, with trivial Z/2-action, we have, as usual,

(26) S'ASY ~PL
Regarding P!, we get from the same diagram
(27) SYASY ~ Pl

where S7 is the (barycentric subdivision of the) simplicial circle with the
canonical (=sign) involution, and S is Gl which is G,, with the involu-
tion z — 1/z. (In fact, (27) is more easily seen if we change coordinates
on P! by a fractional linear map to move the fixed points to 1, —1, which
transforms the action so that the generator of Z/2 acts by z — 1/z. The
basic Nisnievich square then gives the desired decomposition.)
In any case, we conclude from (26) and (27) that we have a Z /2-equivariant

decomposition

(28) —H—Z/Z ~ Sl+a/+y+)/a

where, as usual, addition in the “exponent” of the sphere indicates smash
product.

4.2. The periodicity theorem. Let R be a commutative ring with involu-
tion, and let M be a finitely generated projective R-module. A Hermitian
form on R is a bilinear map

w: M® M —-R
which satisfies
w(ax,y) = aw(x,y), a € R,
w(x,ay) = aw(x,y), a € R,
w(x,y) = w(y, x)

where (?) is the involution in R. For a projective R-module M with a Her-
mitian form w, we denote by

(29) O(M)
the group of all automorphisms A of M as an R-module which satisfy
(30) wW(Ax,y) = w(x,A™'y).
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Comment: The notation (29) may seem odd, since thinking of the example
of R = C, and (?) being complex conjugation, it would seem more appro-
priate to denote this group as U(M). We should keep in mind, however, that
we can also think of (and in fact, the original emphasis was mostly on) fixed
rings, in which case the notation (29) seems to make more sense.

Now if we worked in the category of Z/2-equivariant smooth affine schemes,
we could denote by

(31) KR

the Z/2-equivariant motivic space which is the fibrant replacement of the
sheafification of

(32) S pec(R) QB(]_[ BO(M))
M

where R is a ring with involution ?, or, in other words, the ring of coeffi-
cients of a smooth affine Z/2-scheme, and M is a set of representatives of
isomorphism classes of finitely generated projective R-module with a Her-
mitian form. Note: As stated, the definition may seem not functorial, but
we have the usual remedy: following [15], we may define for two finitely
generated projective R-modules M, N O(M, N) as the set of isomorphisms
A : M — N satisfying (30); these categories are “functorial” with respect
to base change, but not small; picking (small) skeleta using the class axiom
of choice gives functoriality for our definition.

However, as noted in [15], it is still not known if Hermitian K-theory is
homotopy invariant, in particular, if it satisfies Zariski descent on arbitrary
smooth schemes. Therefore, extending this definition to the site of Z/2-
equivariant smooth schemes must be handled with care.

Comment: Since this paper was written, M. Schlichting alerted us to
two developments: First of all, in his new paper [46], he proves Zariski de-
scent for Hermitian K-theory for arbitrary schemens with an ample family
of line bundles. Further, as a consequence, Hermitian K-theory is homo-
topy invariant on regular Noetherian separated schemes over Z[1/2]. This
simplifies the treatment introduced below in this context.

For a Noetherian scheme X, Jouanolou [24], Lemma 1.5 provides a finite-
dimensional vector bundle torsor W — X which is an affine scheme. Fol-
lowing Weibel, Thomason [53], Appendix, we can make this construction
functorial. Let us work, say, in the site of smooth separable schemes of
finite type over S pec(k). Consider the category Cy whose objects are tuples

a={W, > X, {f'W| f:Y—> X}}
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consisting of a torsor W,, of a finite-dimensional vector bundle over X, and
explicit choices of pullbacks of W, by all maps ¥ — X in the site. Mor-
phisms & — B are morphisms of torsors W, — Wj over X. This defines a
strict functor

O :Sm/k — Cat,

and the category assigned to an object V of Sm/k has a small skeleton Iy .
Such data give a functor

(33) Paff 1= [T W,:Sm/k — affine schemes,
acO0bj(lr)

and a natural transformation
Vu ff -V

for any small subcategory C of the category of schemes over S pec(k).

To see this, start with a choice of Iy for each V € Ob j(C), then expand Iy
to include images of Iy under ®(f) for all f € Mor(C). After repeating this
procedure countably many times, take the union. This results in a choice of
Iy which gives the desired strict functor and natural transformation.

Because this construction is strictly functorial, it is equivariant with re-
spect to finite groups. Of course, we must be careful with applying Hermit-
ian K-theory, since Vs, is no longer a smooth scheme. Nevertheless, it is
easy to see that (33) is an inverse limit of smooth equivariant schemes: all
we need is to take the inverse limit (under projections) of products over sets
of factors which include, with each factor, all images under the finite group
in question (i.e. take products over sets of the form {gs|g € G, s € S} where
S is a finite subset of Obj(1y)).

When we pass to coeflicient rings, (33) turns into an infinite tensor prod-
uct, i.e. a direct limit of finite tensor products, and, as remarked above, in
the equivariant case, the finite tensor products can be taken to be equivari-
ant. Let us now specialize to the situation of interest to K IRglg . Because of
the fact that Vs is not smooth, we do not want to consider finitely gen-
erated projective modules with a Hermitian form over Oy,,, directly, but
pushforwards M of finitely generated projective modules over finite Z/2-
equivariant sub-tensor products Vot two such modules with Hermitian
form will be considered isomorphic if they become isomorphic after push-
forward to a larger Z/2-equivariant sub-tensor product V... Such modules
over Vs will be referred to as strictly finite projective modules with a Her-
mitian form. Then we can replace (32) by the presheaf of based simplicial
sets on S (G) given by

(34) Vi QB(U BO(M))
M
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where M ranges over representatives of isomorphism classes (in the above
sense) of strictly finite Oy, -projective modules with Hermitian form M. A
key point is the following

Lemma 9. The canonical map from (34) to (32) is an equivalence of sim-
plicial sets when V is a Z|2-equivariant affine scheme.

Proof: Clearly, we may express Vs as a directed inverse limit of Z/2-
equivariant finite-dimensional vector bundle torsors. For such torsor, we
may further cover V by a finite system of Z/2-equivariant Zariski open sub-
sets over each of which the torsor is trivial. Since Hermitian K-theory sat-
isfies Zariski descent in the category of commutative rings with involution,
as well as A!l-homotopy invariance (cf. [15]), the statement follows.

To be precise, Al-homotopy invariance is technically only stated for rings
with trivial Z/2-action in [15], but the argument extends to the equivariant
case. Hornbostel-Schlichting [16] remark that the statement follows in gen-
eral from Karoubi induction (Lemma 5.3 of [16]), i.e. from homotopy in-
variance of ordinary algebraic K-theory and Balmer-Witt groups. The case
of algebraic K-theory is trivial since it does not depend on the Z/2-action,
while the case of Balmer-Witt groups is a theorem of Karoubi (Corollary
3.10 of [27]). O

Theorem 10. We have A'-equivalences of 7 |2-equivariant motivic spaces

% alg al
(35) QY KRYS ~ KR

o » Hornbostel-Schlichting [16]

(36) QKRS = KRS,

(37) QKRS =~ QYKRS®

o » Karoubi[25]

Proof: We will first prove (37). Hornbostel [15] (following Karoubi [25]
and Kobal [28]) writes down fiber sequences

(38) U —= F(Z/2,,KRY) "~ KR",

(39) V— KR —> F(Z/2., KR.")

where H is “hyperbolization” and F is the forgetful map. He then quotes
Karoubi [25] to prove

(40) QLU) =V, QU)=_V
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where _(?) denotes the analogues of all the above constructions with qua-
dratic forms replaced by symplectic forms. Essentially by definition, we
have

(41) V = QKRSE.

One next checks that

(42) QU = QKR®.
Indeed, to this end, it suffices to check that the map
(43) F(XZ/2,,KR(®) — QKR

given by Q7H is the same as the one induced by the canonical “pinching
map” (the Pontrjagin construction)

(44) SY > 7/2, ANS”.

This can be done directly from the definition. The left hand side of (43) is
represented by

QB( || BGL(M))
M

where M is as in (32). One may in fact deloop once and consider the model
of (43) in the form

(45) Q'B( [I BGL(M)) —» Q"B( [ BO(M)).

M M

Using simplicial approximation, the two maps (45) are then readily seen to
coincide by definition.
Now by (41), (42),

(46) QKRS ~ Q'V ~ Q"W'(_U) ~ Q*(_KRY®).

Similar arguments hold if we add _(?) everywhere, which gives (37).
Now (35) is essentially Proposition 5.1 of [15], namely that

(47) KRI®(R) — KRI®(RI1, ') — Q'KRI4(R)

is a (split) homotopy fibration for every ring R (in [15], it is stated only for
fixed rings, but Theorem 1.8 of [16], which [15] cites, applies to rings with
involution as well).

To prove (36), we remark that an analogous argument to [15, 16] also
holds with R[z,17'] replaced by R [, '] where involution is given by

t— —t.
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In effect, to make this precise, we must review some of the concepts of [16].
Let (A, ?) be a commutative ring with involution in which 2 is invertible.
Consider an element f € A which is a non-divisor of 0, such that

(48) f=-f
Recall from [16], 1.3, that a category with duality (C,#,n) is a category C
with a functor §f : C — C° and a natural equivalence 7 : Idc — #f such
that

ldy = 77,& O T8
The associated Hermitian category is then defined as follows: Objects are
pairs (M, ¢) where M is an object of C and

¢ M= pp

is an isomorphism such that ¢ = ¢#;. A morphism « : (M, $) — (N, ) is a
morphism « : M — N in C such that o*ya = ¢.

Using an analogue of Quillen’s Q-construction, [16], Definition 1.3 de-
fines spaces

W(O), UC) =Q(W(0))

generalizing the corresponding concepts for rings, where € € {+1}, and the
subscript € indicates replacing C with the category with duality (C, §, en).

Let X be the multiplicative set generated by f. Then in [16], one defines
a category with duality Ty as follows: Objects are injective morphisms of
projective A-modules

(49) i:P1—>P0

which become isomorphisms when we invert X. The group of morphisms
from (49) to

(50) i': P - P
is the group of commutative squres

P, —= P,

||

’ i ’
Pl PO

modulo the subgroup of all squares (51) which split by maps Py — P.
The duality is given by the contravariant functor (?)* where, for an A-
module M,

M¥ = Homg.,(M, A)
={f:M— Al f(am) =af(m) for all a € A}.
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Thus, the dual of (49) is
it Ph - Pt

The localization theorem, Theorem 1.8 of [16], then applies directly to our
situation, and gives a homotopy fibration

(52) U(Ts) — KRI®(A) — KR (As)

where Ay is the ring A with Z inverted.
To identify the first term of (52) in the case of A = R7[¢], X = {1,1, 7%, ..., },
however, we cannot apply the dévissage theorem, Theorem 1.11 of [16],

directly, since that result applies only to the case when f = f, which differs
from (48).

In fact, to extend the method to our case, we must carefully investigate
the concept of morphism of categories with duality

(C. 8, — (D, §,7).
This is a functor
F:C—-D

together with a natural equivalence
(53) A #F — FOPy

such that the following diagram commutes:

F
54 n T
(54) ;M/o 1
fHE < BFOPd <~ Fiifl.

(This generalizes slightly the definition of [16], which require an equality
in (53). In fact, this is precisely what Schlichting [45] calls a non-singular
form functor. In the present case, we need the generalized definition, which
causes no substantial change in the arguments.)

Then, by letting F(A) denote the category of free A-modules, we define,
in the situation of (48), a morphism of categories with dualities

(55) F: —EF(A) - eTZ

by sending M to

(56) M—>M.
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Recalling carefully (48), we let A be the square

Mt I Mt
(57) I% &M
f
M —— Mt

We note that in diagram (54), the double dualization will introduce minus
signs in both vertical arrows of the comparison square, hence the minus
sign in (55). Further, similarly to [16], 1.6, the corresponding square (a
morphism version of (56)) becomes split for morphisms which are divisible
by f, and hence we obtain a morphism of categories with duality

(58) ~F(A/fA) = Tx.

Further, (58) obviously extends to the respective idempotent completions (a
technical point needed in (48)), and hence induces a map

(59 —W(A/fA) = W(Ty).
We now have

Theorem 11. (dévissage): In the present situation, i.e. a commutative ring
with involution A in which 2 is invertible, a non-zero divisor f satisfying
(48), and the multiplicative set X generated by f, the map (59) is an equiv-
alence.

Proof: Analogousto [16, 11], although a few commets are in order. Hornbostel-
Schlichting [16] state a dévissage theorem for rings with involution with the
exception that (48) is replaced by

(60) f=1

and accordingly in (59), the minus sign on the left hand side is deleted.
That result is, in effect, needed in the proof of (35) above. The strategy
of the proof in [16] is to use Karoubi induction, proving equality between
Balmer-Witt groups and classical Witt groups in negative dimension, and
quoting [11] for a dévissage theorem for Balmer-Witt groups. The Karoubi
induction argument works analogously in our case, in fact, the argument
[16] can essentially just be adopted verbatim.

The reference [11], on the other hand, strictly speaking, does not apply
to either our present situation or to the case of [16], as [11] only considers
fixed rings (i.e. where the involution is the identity). However, studying the
method of [11] in detail shows that it can, in effect, be adapted both to our
present case and to the case of [16].
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To do this, let us first note that in the case of fixed rings, Gille [11] con-
siders a substantially more general context of Gorenstein rings with finite
Krull dimension. The basic idea of the proof is to filter by dimension of
support, and use a localization spectral sequence [11], 3.3. In the non-
equivariant case, this reduces the statement to the case of local Gorenstein
rings R where the Balmer-Witt groups with support in the maximal ideal
m are proved to be isomorphic, with appropriate shift, to the Witt groups
of the residue field. We do not know whether this method generalizes to
Z [2-equivariant rings in the generality of Gorenstein rings of finite Krull
dimension. The problem is that in the case of local Gorenstein rings, one
relies on minimal injective resolutions, the behavior of which under involu-
tion we don’t fully understand.

However, for our purposes, it suffices to consider regular rings. In this
case, the Z/2-equivariant analogue of [11], 3.3 leads to two different local
cases. When the maximal ideal m is not invariant under the Z/2-action,
we are back to the non-equivariant case. In the case when m is invariant
under the Z/2-action, we need to show that the Balmer-Witt groups of a
7 |2-equivariant regular local ring R with support in the maximal ideal m
are isomorphic, with the appropriate shift, to the Witt groups of the residue
field.

More precisely, we have the following. By Luna’s slice theorem [34], for
a Z/2-equivariant regular local ring R of Krull dimension » with maximal
ideal m, we can find n generators

m=(fi,..., fu)

(called regular parameters) such that
?i:—ﬁforlsiSq,

fi=fiforg+1<i<n

for some ¢ < n. Let k be the residue field. Our statement than reduces to
the following analogue of Lemma 4.4 of [11]. O

Lemma 12. There is a natural diagram of isomorphisms
W(k) —— (1 W(R)
(61) \ T
1y Wi (R )

where € = 1 ifi < q and € = 0 otherwise, and the vertical map is the
canonical one.
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Remarks: W (R) means the obvious extension of Balmer-Witt groups with
support [11], Definition 2.16, to rings with involution. A minus sign in front
of Balmer-Witt groups on the right hand side of (61) indicates shift of the
number n by 2 (the groups are 4-periodic).

Proof: We will only consider the top row of the diagram. The naturality
contained in the diagram will follow from the construction. In the present
regular case, we may use projective rather than injective resolutions. Let
D?(P , m(R)) denote the bounded derived category of complexes of projec-
tive R-modules with finitely generated homology with support in m. Define
then a functor

(62) L D"(P(k) = D"(Pfom(R))

which sends k to the complex

(63) & (gL R)
i=1

where the target of each of the morphisms is set in dimension 0, and the
tensor product is over R. The behavior of (62) with respect to duality is
analogous to the analysis we made above. On the right hand side, we can
take the duality Homg(?, R), which however has to be shifted by n. Fur-
ther, one must be careful in choosing the signs in the duality isomorphism
on (63). We may choose the sign to be, say, (—1)* on the R-term which
has dimension 1 in precisely k factors 1 < i < g in (63). Since the dual

switches dimension of each factor between 0 and 1, we see that the duality
isomorphism on the right hand side of (62) must be multiplied by the sign

(=17

What is left is showing that the map (62) induces isomorphism of Balmer-
Witt groups, which is, in effect, our final reduction of the dévissage theorem.
To this end, we consider the diagram

D (P(k))

%
L

Db(Pngn(R)) <~ Db(Pfg,m,semis.(R))

Db (Mfg,m(R)) =~ Db (Mfg,m,semis. (R))

b~ 4

Db(Mfl(R)) Db(Mfl,semi.Y.(R))

e
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Here Db(Mfg,m(R)) denotes the bounded derived category of chain com-
plexes of R-modules with finitely generated homology with support in m,
and the symbols DP(P 4 . semis.(R)), D’ (Mg m semis (R)) mean full subcate-
gories on complexes whose homology is semisimple. The categories in
the last row mean derived categories of the abelian categories My(R) of
modules of finite length, and M somis.(R) of semisimple modules of finite
length. Comparisons of dualities in the spirit of [11], Theorem 3.9 have
to be made, but no additional signs arise here. Now ¢’ is an equivalence
of categories, as are a, ¢ (by regularity) and b, d (by direct inspection). All
equivalences of categories which preserve duality induce isomorphism on
Balmer-Witt groups (e.g. Theorem 2.7 of [11]). Thus, it suffices to show
that the map e induces an isomorphism on Balmer-Witt groups. To this end,
one first notes that the corresponding Balmer-Witt groups are isomorphic to
the classical Witt groups of the underlying abelian categories (Balmer [2]).
Then, one uses the “Jordan-Holder theorem” of Quebbemann, Scharlau,
Schulte [42]. O

By the Theorem, setting A = R™[t], f = t, we obtain in our situation a
homotopy fibration

(64) _KRIE(R) — KRR [1,07']) —» QUKRIE(R).

But now note that if we put

G, := SpecR[t, 1.
we have a cofibration
(65) (), — S° — P
Recalling (27), the last term of (65) is

Sroe,

Thus, replacing R[z, '] by R™[t,7'] in (47) yields

K3 (P ~ _K3“(Ph,
i.e.

Qrve Klelg ~ Ql+e Klelg,

so (36) follows from (35). O
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4.3. The Z/2-equivariant motivic spectrum KR,

Comment: From (36), it follows that if we denote by R’[z, '] the ring
R[t,t7'] with involution  + 1/¢, we get a split cofibration

(66) KRR — KRI®(R'[1,17']) — QKR“R,

which answers a question implicit in [15], the paragraph before 5.1.

The periodicity theorem now implies
(67) KRYS = QU v KRS o F(T), KRYS).

Thus, the standard method gives a Z/2-equivariant motivic spectrum KR%%
whose 0-space is K R and which satisfies

(68) Tz A KRS ~ KRS,

5. THE COMPLETION THEOREM

5.1. The “Karoubi tower”. Let
c:8° > 87

be the canonical inclusion of fixed points.

Theorem 13. The equivalence (35) can be chosen in such a way that the
composition

SO < ZyKlRalg _t. 2—(1K|Ralg
is homotopic to n.
Proof: The composition

/2, — §0 —"> soKRes
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is 0 since 7 = 0 € n,K% (a formula true for any algebraically oriented
motivic spectrum, cf. [19]), which gives the top square of a diagram

7/2, —L = s-oKRE A 72,

A

S0 YK R
(69) ¢ L c
SY T o Y-y KR4

37/2, — %S KRYE A 7)2, .
The maps «, ¢ exist for formal reasons. Thus, we have
(70) n=1tc

for some «. Now we use the commutative ring structure on KR*$ (defined
by the standard methods analogous to other kinds of K-theory, i.e. tensor
product of bundles, etc.) to reinterpret (69) as a diagram

K[Ralg *fl> Z—aK[Ralg

71) l /

TYKRYE,
Let W resp. GW denote the Witt resp. Grothendieck-Witt ring of the base

field. Taking 7,,,, m > 1 on (71), the diagram becomes a diagram of maps
of W-modules

W—=w

(72) l /

4

by [15] and Theorem 10. Further, 7 is an isomorphism (multiplication by a
unit), and hence so are c, t. (Recall that K [Rfilfy =K [Rglg = GW by (35).) We
therefore know that the reduction of the map ¢« € GW to W is a unit. Now
note that on r,, the map in (70) becomes the inclusion

[H]
77— GW.

Therefore, the proof of the Theorem is concluded by the following result.00

Lemma 14. Let « € GW be an element which reduces to a unit in W. Then
there exists an m € 7 such that a + m[H] is a unit in GW.
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Proof: We have a 8 € GW such that
aff =1+ n[H].
Taking augmentation, we get
ab =1+ 2n,
so the integers a, b must be odd, say,
a=2k+1,
b=20+1.

We compute

(@ = kKLHD)(B — ([H]) =

aff — 2k + V)Y{[H] — (2¢ + Dk[H] + 2k{[H] =
aff — 2kl + k + O)[H] =

af —nlH] =1.

5.2. The completion problem for Hermitian K-theory. The Tate dia-
gram for KR (after taking fixed points) looks as follows:

KR , KH KT
(73) :l ql l
al —al
K[Rh;/z S (KRalg)hZ/Z N (KR g)Z/z'

Hence the top cofibration sequence is the one constructed in Kobal [28],
where KH denotes (affinized) Hermitian K-theory and K7 is Balmer-Witt
K-theory [15]. (Note however that we are working with “affinized” versions
of all the theories in question.)

One may also suspend by any dimension k + @ + my + nya before tak-
ing fixed points in (73). However, by the periodicities proved in Theorem
10 above, only suspensions by k + fa give new information, and they are
already contained in (73).

The completion problem asks in general in what sense (if any) the mid-
dle vertical arrow of (73) is a completion, or becomes an equivalence after
completion. To address this question, first recall [12] that we may write the
basic cofibration sequence

EZ/2, — S° — EZ]2



EQUIVARIANT MOTIVIC HOMOTOPY 29
as the homotopy direct limit of

S (my), — §0 5™,
so the middle vertical arrow of the Tate diagram before taking fixed points
E - F(EZ/2,,E)
can be identified with the canonical map

E — holim E/c".
P
n

Similarly, we may write

—

E=c"' holim E/c", EZ]2ANE = 'E.
n

Using Theorem 13 above, we therefore deduce

Theorem 15. There are natural 7 |2-equivariant equivalences

(74) holim KR™[n" ~ F(EZ/2,, KR"),
n
(75) 0! holim KRS /if" ~ KRz
n

O

Note that 1 is an element in non-equivariant motivic stable homotopy
groups, and therefore (74) and (75) can also be stated on the level of fixed
points:

hqhm ((KlRalg)Zﬂ)/nn ~ (KlRalg)hZ/Z,

n
7" holim ((KR*$)2/%)/n" = (KRele)* /2,
n

However, we may attempt to go further and calculate the homotopy cofiber
of the canonical map

¢ holim KR /xp",

(76) KRite —— "

which by the Tate diagram is the same as the cofiber of

(77) 7' KR — 7' holim KR™ /",
n

The behavior of the theory KRe% is described in the following result.
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Theorem 16. The (x + xa + *y + *ya)-graded coefficients of KR have
periodicities vy, a, 4, 1 + ya. Further,

(1) Forn #0 mod 4, we have (@g)n =0.

(2) The map (PF?KR¥8)y = KTy — (@g)o is the map

(78) W — lim W/I

where 1 is the augmentation ideal of the Witt ring W.

Proof: First, note that Tate-cohomology is always y-periodic, and the pe-
riodicities stated are a formal consequence of that and the periodicities of
Real algebraic K-theory proved in Theorem 10.

The main idea of the argument proving (1) and (2) is to calculate KRez
by a “slice spectral sequence”. We shall however not discuss an analogue
of Voevodsky’s theory of slices [52] for G-equivariant spectra in the present
paper. Instead, we observe that Borel and Tate cohomology can be cal-
culated in the category of naive G-equivariant motivic spectra, by which
we mean ordinary (non-equivariant) P'-spectra equipped with a (strict) G-
action. KR$-theory can be represented in this category by the presheaf on
the category of affine smooth schemes over S pec(k) which sends S pec(R)
(for a non-equivariant ring R) to

QB( ] BGL(M))
M

where M is a finitely generated projective R-module with a quadratic form,
the action is by A — (AT)~!, where T is adjunction with respect to the
quadratic form.

To see that this is the right construction, recall the remarks in Subsection
2.1 on “forgetting equivariant structure” on a Z /2-equivariant motivic space
X: one applies the functor to schemes of the form Z/2x?. In our case,
Z]2 x S pec(R) is S pec(R[] R), where the Z/2-equivariant structure can
be taken as interchanging the factors, so if a S pec(R [][ R)-module M is
obtained by change of basis from an R-module N, then we have O(M) =
GL(N).

The construction of the coniveau tower due to Levine [31, 32] is functo-
rial, and thus applies automatically to the category of naive G-spectra. More
specifically, Levine [32] defines, for a motivic spectrum E, a functorial ho-
motopy coniveau tower

(79) B AR S

whose homotopy (inverse) limit is £, which realizes Voevodsky’s slice tower
[52]. Levine [31, 32] showed that the slices of ordinary algebraic K“¢ are
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H7M°', The (unrigidified) Z /2-action on the slice
(80) H7% — H7

can be identified by comparison with the topological case [18]; in dimen-
sions where no suspension by y or ya is present, the action is trivial; v,
induces a periodicity. Applying the construction (79) to a naive G-spectrum
E, we obtain a double tower, indexed in n, p

81) FG(EG,y, E™)

whose homotopy limit is the Borel cohomology of E (recall that by EG,, we
mean the n-skeleton of the reduced bar construction B(G, G, *)). Therefore,
“totalizing this (co)-filtration” in any way we choose, we obtain a spectral
sequence conditionally convergent to the Borel cohomology of E. By in-
verting the pushforward of the one point compactification of the simplicial
model of the reduced regular representation of G (the direct limit of iter-
ated smash products of this space is EG), we obtain a spectral sequence
conditionally convergent to E..

In our present case G = Z/2, E = KR, we find advantageous the
totalization of the degrees (81) which equates, in filtration degree, one slice
of the Levine tower with two cell dimensions of EZ /2. Specifically, let

KlRalg

<<n>>

be the homotopy fiber of

[T TII =" 7"F((EGr-am)+ ECY)
(82) kg m+j—{=n
= I [T Z* 2 Fo((EGrm)+ ETY)

kg m+j—{=n—1

where the maps are obtained by lowering either of the indices m, € by 1.

In the case of the corresponding Tate spectral sequence, which we by
convention ([18]) grade homologically, the fixed point spectrum of the as-
sociated graded object is a product of copies of the smash product of the
Moore spectrum MZ /2 with HZY°" (by (80), the connecting map of the 2-
cell free Z/2-CW complexes into which we have cut EZ/2, when smashed
with HZM'| is 2); this smash product is HZ/2M°", whose coefficients we
know by the Milnor conjecture, proved by Voevodsky [50]. For instance,
when j = k = £ = 0, the term on the left hand side of (82) involving the 2m-
skeleton of EZ/2 is in filtration degree —m. If we increase k by 1, (which is
where the canonical element ¢ : S° - S7 is present), the 2m + 1-skeleton
will end up in filtration —m, (and similarly linearly in k). In the 1-st slice,
everything is periodic by multiplying by v;, which increases j and ¢ by 1
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(and again, similarly in multiples). This is the reason we chose the filtration
in the way specified above. Accounting for all the copies of HZ /2, we get

E' = HZ/2Y'[2, 277 [o?, o 21[c, ¢ lvi, vi ']
= (Ku(F)/2).[01[4, 27" 1[0?, o 2][c, ¢ vi v ],

where the dimensions of elements are given by
02| = 2=-2y, lcl==y, vil=1+vya, [A=1+ya-—y—-a,|0=1-aq,
and the filtration degrees of all these elements are 0 except
deg(c®™) =k

(we list all the dimensions, since with this filtration, the spectral sequence
isn’t really a spectral sequence of rings). But now comparing with the topo-
logical case (over the field C, see [18]), we get

d1(0_4k+2) — V1C36/l—10_4k’

SO

E> = (Ky(F)/2).[4, 27 [c*, o *1lc, ¢ lvi, vi']

= Eq(WPH[A, A [o*, o~ le, ¢ ' lvi, v ']
Here we have identified the ma-line of HZ /2, with the I-power filtration
associated graded of the Witt ring via Voevodsky’s determination of the
mod 2 motivic cohomology of a field [51] and Orlov-Vishik-Voevodsky’s
resolution of the Milnor conjecture [41]. The map from KT = ®Z/2KR%¢
proves that all of these elements are permanent cycles, as claimed. O

We observe that by Corollary 5.2 (p.352) of [29],

(83) NI1"=0,

i=0
and thus the map (78) is always injective.

On the other hand, it is also immediate that (78) is an isomorphism if and
only if there exists an n such that /" = 0, which is not true in general:

Proposition 17. If F is any field of characteristic 0, adjoining infinitely
many transcendental variables x, ..., x,, ..., then the field k = F(xy, ..., X, ...)
satisfies

(84) I"+0
for all n.



EQUIVARIANT MOTIVIC HOMOTOPY 33

Proof: We may consider the inclusion

(85) k C k[ VX7, .o V.

This is a Galois extension, with the Galois group a product of n copies
of Z/2. Thus, the mod 2 Galois cohomology of k maps to the Galois
cohomology with Z/2 coeflicients of (85), which is

A[Fz(al LIRS ] an)’

with x; mapping to @;. Thus, we see that the symbol [x, ..., x,,] is non-zero
in K™ /2(k), which, by the Milnor conjecture (proved by Voevodsky [50])
implies (84). O

Thus, for the choice of k of Proposition 17, the map (76) is not an equiv-
alence. One may next ask ([7, 28], etc.)

Does the map (77) become an equivalence after com-

(86) pletion at 27

Here the notion of completion at 2 might seem ambiguous, since it could

mean localization Lyz,, at MZ/2 or hgl_im (7)/2". Recall, however, the
n

following result:

Lemma 18. There is a canonical equivalence

(87) LyznE = holim E[2".
n

Proof: (following Bousfield [8], but reproduced to emphasize its indepen-
dence, to a large degree, of the model structure): First, note that we have a
canonical map

(88) E — holimE/(2"),
and that this map induces equivalence after smashing with MZ/2: because

of stability, smashing with M7 /2 commutes past the holim, so on the right
hand side of (88) we have

(89) holim(E/(2") A MZ]2),

but the content of the parentheses is
(90) E/2V XE/2,

and the structure map of the homotopy limit is 0 on the second factor (this
follows from writing explicitly the cofibration sequence with respect to mul-
tiplying by 2 and then, on the result, multiplying by 2").
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Thus, (89), which is again the right hand side of (88) divided by 2 is E/2,
and clearly (88) divided by 2 is the identity (since in each constituent of the
holim, we get the identity to the first summand of (90)).

Thus, (88) is an equivalence after smashing with MZ/2, so it suffices to
prove that the right hand side of (88) is MZ/2-local. This means that for
every spectrum Y with

1) YAMZ]2 =0,

the mapping spectrum from Y to the right hand side of (88) is 0. Clearly,
such a property however is preserved by the holim, and for each constituent,
this follows again from the fact that (91) is equivalent to 2 : ¥ — Y being
an equivalence. O

Let us also note that Ly, preserves cofibration sequences, and £ = KT
is “completable” in the sense that it satisfies

(92) Hom(Z/2%,n,.E) =0

by (83), and the fact that 2 € /. We also immediately see then that the an-
swer to question (86) is no in general: if F is any field which contains V-1,
then 2 = 0 € Wg. Thus, completion at 2 is the identity on the coefficients
of KT. On the other hand, putting F := Q(i), we see by Proposition 17 that
for the field F(xy, ..., x,, ...), the completion at I is non-trivial on the field k
defined there.

This further suggests restricting quesion (86) to fields of finite transcen-
dence degree. In this case, we can, indeed, prove that the map (78) becomes
iso on coeflicients after 2-completion. In fact, we can prove a more general
statement. We already remarked that 2 € 1.

Lemma 19. For any field k with cd)k[i] = n < oo, and for any N > m >
n+1,

(93) 21" + IV =

Proof: The statement is trivial when i € k. Thus, let us assume i ¢ k. First
consider the Serre spectral sequence in  mod 2 Galois cohomology for the
field extension k C k[i]. We have

(94) Ey = Hg,(k[i), Z/2)[([-1D)]

where [—1] is the generator of H*(Z/2,7/2) = Z/2[([-1])], and [—1] has
bidegree (p,q) = (1,0). Further [—1] is a permanent cycle in (94), so one
proves by induction that

(95) [-1]: EP9 — EP*14
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is an isomorphism for p > r. However, note that £, = E, for dimensional
reasons. Thus, we have shown that

(96) [-11: H" (k,Z/2) — H":\(k, Z/2)

is an isomorphism for m > n + 1. By the Milnor conjecture, we can then
replace Hj, (?,7/2) by K};(?7)/2, which however is the associated graded
object of W with respect to filtration by powers of the augmentation ideal /.
Noting further that 2 € W is represented by [—1] € Kjb(?)/2, (93) is just a
restatement of this fact. O

We note that the book Elman, Karpenko, Merkurjev [9] contains several
related statements, but we could not find the precise statement of Lemma
19.

Theorem 20. The answer to the question (86) is yes on coefficients over a
point for fields k satisfying cd,(k[i]) < oo.

Proof: By Theorem 16 and the subsequent discussion, it suffices to show
that the canonical map

97) lim W/2" — lim W/I"
n n

is an isomorphism. We shall use Corollary 5.2 (3) (p.353) of Lam [29],
which asserts that

(98) N(@-W+I)=¢-W

for any Pfister form ¢. Since 2¥ € W is representable by a Pfister form,
Lemma 19 implies that for every m, there exists an n such that

I"c2”,

Thus, powers of the ideals 2 and I induce the same uniformity, and our
statement follows. O

Comment: We note that an analogue of the Theorem for p > 2 in the
spirit of [21] is also true, although less interesting. When cd,(F) < oo, the
completion of W at p is 0 (since W is 2-torsion), while its completion at the
augmentation ideal is 2-complete, and hence the p-completion of (77) is an
isomorphism, both sides being 0.
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6. Mortivic REAL COBORDISM

In this section, we propose a construction of Real motivic cobordism.
The main comment toward motivating our construction is this: while the
complex conjugation on MU may seem to be a natural operation, it is not al-
gebraic over C. However, the algebraic construction we propose must work
over all fields, hence also over C. Therefore, another analogy is needed.
The analogy, using the involution on matrices

A (AT
is strongly suggested by Hermitian K-theory. Using this construction, one
may produce analogues of Thom spaces, but additional technical difficul-

ties arise in stabilization. We present below one possible solution to this
problem, and the new phenomena it suggests.

6.1. The construction of motivic Real cobordism. Consider the hyper-
bolic quadratic form on k*":

(99) G(X1, eeey X2) = X1 X2 + oo + X2p_1 X2

The associated symmetric bilinear form is

n

(100)  B(X1s oo Xan)s (V15 o ¥20)) = D Xo¥i1 + Xaio 1Y
i=1

The b-adjoint of a matrix A = (a; J)ijl is an n X n matrix A”* such that

(101) b(Ax,y) = b(x,A™y)

Explicitly, putting A™> = (b; )i j=1> one has

(102) b2i,2 j = a2j-12i-1,

(103) byi—12j-1 = azjois

(104) b2i,2j—l = azj2i-1,

(105) byi_12j = azj_1 i

There is an involution on the algebraic group GL,, given by

(106) A (AT

Note that then the resulting group Z2 < GL,, acts on the quadric

(107) 0, = V(x,ylb(x,y) = 1), t € k*

where V(x;|E) (sometimes further abbreviated V(E)) denotes the locus of
the equations E in the variables x;, and the involution on (107) is

(108) Xey
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Recall that Q) has the non-equivariant A'-homotopy type of
(109) A2 — (0} = §@n-De2na
A non-equivariant A'-equivalence from (107) to (109) is the projection
(x,y) = x.
Lemma 21. There is a 7 /2-equivariant isomorphism
0p(x,y) = Qp(x', ¥, 1 € K"
given by

’ -
’ _ ’ —
Xoi1 = X2i-1s Yy 1 = Y2i-1-

Furthermore, this isomorphism becomes 7|2 =< GL,,-equivariant, with re-
spect to an isomorphism

¥ GLy, = Gly,, (a;)) = (aj))

where
’ — L / — i
(111) Ayinj = A2i2j» Ayinj-1 = m121,21—1
’ — ’ —_—
Ayiypj1 = Q2i-12j-1, Qy_1; =1 (2i-12j-
Proof: A direct computation. O

Let us now define the join X * Y of G-A'-spaces X, Y as the colimit of the
diagram

XXYX{0} — X xYxA =— X XY x{l}
X x {0} Y x {1}

where the horizontal arrows are inclusions, and the vertical ones are projec-
tions. Define further the unreduced suspension X of G-A'-space X as the
colimit of the diagram

X X{0} —= X x Al =— X x {1}

l |

* *,

It is possible to show that * defines a symmetric monoidal structure. The
join of n objects Xj, ..., X, can be canonically identified with the coend of

(112) X Xc Ag
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where C is the category of non-empty subsets of {1, ..., n} and inclusions,
XS = l—[ Xi
i€S

is a contravariant functor by projection, and
(113) As = V(xi,.o 2l D 2= 1,3 =0fori ¢ S)

is a covariant functor by inclusion.
We would like to claim that

(114) X+Y=XAY.

Unfortunately, this is false. A partial remedy can be obtained as follows.
Let X be the functorial fibrant replacement of X. We can then construct a
contractible operad O and a natural equivalence

(115) D), AXi Ao AX, > X) % ... x X,

which satisfies the obvious operad action diagrams (associativity, unitality
and equivariance). The operad D can be constructed as follows. Consider
the diagram of A'-spaces

An) = (As)s

over § C {1,...,n} (see (113)). The arrows of the diagrams are given by
inclusions of the sets S. Let

(116) B(n)

be the fibrant replacement of A(n) in the corresponding diagram category
of based A'-spaces. Then we can consider

(117) B) A ... AB(1)
as an object in the same category of diagrams, where (?)g is

(B(1)e A ... AN(B(1)),

where € is 1 or 0 depending on whether i € § or not. We can then let D(n)
be the Al-space of maps from the diagram A'-space (116) to the diagram
A'-space (117).

Now write Q) = Q}). Writing more specifically b, instead of b for the
bilinear form on the space k*", we have by Lemma 21 a canonical map

(1 18) Qb"l * b * Qb”k - Qb”l*“'*"l\"

which satisfies the obvious commutative, associative and unital properties;
the map is obtained by applying the morphism Qp, to QZ ~ where t; are
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the coordinates of the join (112) (note that the map is defined and Z/2-
equivariant even in the case ¢; = 0), and we are using the obvious inclusion

(119) b XX O SO, ., forn+ . +n=1.
. "

Therefore, if we denote -
S(n) = O,
then we get canonical maps

(120) D)y ASm) AN .. ASy) = Sy + ... + 1)

which satisfies the obvious commutativity, associativity and unitality prop-
erties.

We will deal with the operad D later. For now, we need an analogue of
the construction (120) to Thom spaces. That is complicated by the fact that
the isomorphism (111) is not defined for t = 0, so the map (118) defined via
(119) cannot be made GL,,, X ... X GL,, -equivariant by twisting the group
action on the target by the isomorphisms ¢ of Lemma 21.

Fortunately, the quadrics Qg are contractible (they are cones), so they
may be collapsed to a point without altering the homotopy type. More
precisely, we do the following. To simplify notation, write

Ui = X2iY2i-1 + X2i-1)2i>

Vi = Upjsoanjg+1 1 o T Ut n
Let us write
o) = Q;,.
Now denote by Q’(ny, ..., n;) the sheaf obtained from Q(n) by collapsing, by
projection, for non-empty subsets

S c{l,..k
the subschemes
(121) V(v; =0for j e S,Zv‘, = 1)
Jj&S
to
(122) s V() vi=1)
i¢S

(i.e. we mean all the constituent variables of every v;, j € S, are omit-
ted). Note that some justification is needed to make the construction, since
the subschemes (121) are not regular. We procede in the usual way, i.e.
choosing GL,,, X ... X GL,, -equivariant resolution of singularities, and then
collapsing the inverse images. (Obviously, this can be done in the present
situation.)
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Lemma 22. The natural map

(123) O(n) = Q' (ny, ..., )

isa Z]2 = (GLyy,, X ... X GLy,, )-equivariant equivalence.

Set -
S(n) = Q(n),
T'(n1s o) = BA(S®, (GLay X .. X GLay )1, Q' (1, s i),
T(ny,...om) = BA(S®, (GLyy, X ... X GLay, )+, Q(1)).
Then we have Z/2-equivariant maps
(124)
D(P)s AT (11, s ig) A e AT (Mp1, s Bpg,) —— T/ (11, s g,

(125) T(ny,.ymy) —= T (ny, ..., ),

(126) T(l’tll, ...,I’qul) - T(I’Lll +t ..t Bpr o+ npqp).

The maps (124), (125), (126) are unital, associative and equivariant. Here
equivariance means with respect to wreaths of symmetric groups which pre-
serve the notation with all possible reindexings. For example, in (124), the
general element of the equivariance group is a wreath of a permutation of p
elements with the wreaths of permutations of g, ..., g, elements, with the
permutations of Ni1seeellpg, elements, etc.

Additionally, we have Z/2-equivariant maps

(127) Sy +..+m) > Ty, ...,ny)

which satisfy pemutation equivariance, and compatibility with all the struc-
ture. The diagram worth mentioning explicitly is
(128)

DP)e NS AN..AS(,) ———— S(ny + ... + 1)

| |

D(k)+ A T’(nll, ...,nlql) AL A T’(npl, ...,l’lpqp) = T’(l’lll, ...,l’lpqp)

where
n; = n; + ..Ng,
which involves (120), (124).
We are now ready to get rid of the operad 9. Indeed, this can be done

formally as follows. Consider the structure on the objects 7'(?), 7'(?), S(?)
specified by (124), (125), (126), (127), (128) (and all the implicit coherence
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diagrams we did not spell out). Let My denote the monad defining such
structure, and let M, denote the monad defining the same structures with D
replaced by the operad = where *(n) = *. Then the bar construction

B(M*’ MD, f))
converts our structure to one where 9 is trivial, i.e.
(129) D(n) = *.

Remark 23. We should remark here one important difference between our
case and the situation, say, of May [36]. In [36], the map of monads
Mgy — M, would not be an equivalence, since the construction of the
monad involves factoring the space D(n) by the action of the symmetric
group X,. When dealing with symmetric objects, however, the symmetric
group action is a part of the structure, and hence, in effect, the construction
of the monad does not involve this factorization. Hence, the monads pre-
serve equivalence of operads (by which we mean a map of operads which
is an equivalence space-wise).

Hence, we may assume (129) without loss of generality.

We will next show that we may further “rectify” to produce an algebra
over the monad M, with the additional property that
(130) the map (125) is an isomorphism.

Before showing how to accomplish that, let us comment on the significance.
Note that if (130) holds, then we simply have Z/2-equivariant maps

(131) Tm)AN...ANTn) = T(ny + ... + ng)

which are associative, unital and equivariant with respect to all wreaths of k
permutations of ny, ..., n; elements, along with a Z/2 X X,-equivariant map

(132) S(n) —» T(n)
together with a commutative diagram

Sm)AN..AS) ——=S(n +... +ny)

0 | l

TN .. ANTn) ——Tny + ...+ ng)

Note that (131), (132), (133) define a symmetric monoid in the category
of Z/2-equivariant S (1)-symmetric spectra. S(1) is a model of Tz,,. This
object can be converted to a Z/2-equivariant [7,,-E. ring spectrum by the
methods of Jardine [22]. Thus, we have

Theorem 24. The above construction produces a Z [2-equivariant motivic
E, ring spectrum, which we denote by MGLR.
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Comment: 1. In analogy with the fact that the geometric fixed point spec-
trum of Landweber’s Real cobordism is the unoriented cobordism spectrum,
by applying the geometric fixed point functor (Subsection 3.3), we may de-
fine a (non-equivariant) motivic spectrum

(134) MGLO = ®*°MGLR.

Defining this analogue answers a question of Jack Morava.

2. There is also a purely topological application of our construction.
There is certainly a topological realization of our definition over the field
F = C, which can be shown to give a Z/2-equivariant spectrum equivalent
to the spectrum MR of [18]. On the other hand, our construction for F' = R
also has a topological realization, which is properly viewed as a Z/2 X
Z |2-equivariant spectrum over the complete universe, with underlying non-
equivariant spectrum MU. The two Z/2-generators act on matrices by A —
A A (AT)~!, respectively. (Note that this is not the same thing, since
we consider adjunction with respect to the hyperbolic form.) We denote
this spectrum by M &, in analogy with Karoubi’s £-theory [26], (recall [15],
Appendix, that this is not the same as the L-theory spectrum used in surgery
theory, which, for rings which contain 1/2, is equal to KT, which is viewed
properly as a Z/2 x Z/2-equivariant spectrum, indexed over the complete
universe, with underlying non-equivariant spectrum K. We will investigate
the spectrum M ¥ in another paper.

Note that to finish the proof of the Theorem, we still need to describe a
construction which converts (125) into isomorphisms. This is accomplished
by a variant of a construction known as May-Thomason rectification. We
consider two categories. Recall that we are assuming D(n) = *. We work
7 |2-equivariantly throughout. A category K is the category of tuples T, 7"
with maps (124), (125), (127). These maps are required to satisfy the rele-
vant permutation equivariances, and unitality and symmetry in the case of
(124), and the diagram (128). A subcategory L consists of all such struc-
tures where (125) is an isomorphism. Then we have two functors

(135) R:L->K, L:K—-L

where R is right adjoint to L. In effect, R is the inclusion, and L is the
functor which replaces T with T”.

Then we have also monads My, M in the categories K, L respectively
which define the structures with the additional structure map (126), satisfy-
ing all the requirements stated above. One sees that these monads preserve
equivalences, so one has an equivalence

(136) Mgy — RM L.
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Again, (see Remark 23 above), in contrast with the situation [38, 37], we
are not required to index the operations (126) by an E-operad, because,
essentially, the monads associated with operads in the context of symmetric
objects do not involve factoring through the action of X,. The required
rectification functor from K to L is then the two-sided bar construction of
monads

(137) B(M L, My, ?).

6.2. Real algebraic orientation, formal group laws, and the Real mo-
tivic spectra series. In this subsection, we would like to mention some
extremely powerful implications of Theorem 24. Essentially, we can now
construct motivic analogues of all the “Real” spectra constructed in [18].
First, we develop the notion of a Real-orientation of a Z/2-equivariant mo-
tivic spectrum. Recall the Z/2-equivariant algebraic group G,/° defined in
Subsection 4.1 above. Then we have a natural inclusion

(138) LS ~ 36} — BG)-.
Naively, it may seem appropriate to define Real-oriented motivic spectra as

7 |2-equivariant motivic commutative associative ring spectrum (not neces-
sarily in any rigid sense) E such that 1 € E; is in the image of the map

L* . El+ya/B®’]n/z N E]-H/QS]-H/Q.

When this condition is satisfied, call E a G,ln/ ‘-oriented 7 |2-equivariant mo-
tivic ring spectrum.

Proposition 25. When E is a G,/*-oriented 7 |2-equivariant motivic spec-
trum, then E.(i1yq) IS a commutative ring.

Proof: (a variation of Lemma 2.17 of [18]). We must show that in the
coefficients E., the map

(139) €:06," > G,

given by z — 1/z induces multiplication by —1. However, the point is that
taking the unreduced suspension of (139), by Real orientability, the map
into coefficients will factor through

(140) T1a0 BV,

On (140), we have two mutually distributive unital group structures, one
coming from the homotopy group, one from the multiplication on G,/°. By
the standard argument, they must coincide. Now € resp. —1 are the inverses
of the element given by the canonical inclusion in the two group structures.
O
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Proposition 26. When E is a G)/*-oriented 7 |2-equivariant motivic spec-
trum, then

(141) E*BG)* = E*[[u]]

where u is the class obtained from the definition of Real orientation. Ad-
ditionally, the multiplication on BG,/* induces a formal group law on the
commutative ring

E*(1+ya)-

Proof: This is precisely analogous to the proof of the corresponding state-
ment in [18]. O

On the other hand, with this definition, we don’t know how to construct
Chern classes, or prove universality of MGLR (in fact, we don’t even know
that MGLR itself satisfies the condition).

The reason for this difficulty is, roughly speaking, that our theory has
a 7*-grading: intuitively, in a well behaved definition, the @ and y-graded
parts of the theory should also make an appearance. From this point of view,
it is more reasonable to consider the following condition:

(142) The unit class in Eltriatyag (1) extends to a class

Wg € El+7+a+yaT(1).
(Note that since BGL, is connected in the Z/2-equivariant motivic sense,
there is a canonical (up to A!-homotopy) “fiber” inclusion S (1) c T(1).)

The trouble is, however, that we do not know if the condition (142) im-
plies G,,-orientability. What we do have, is a canonical map in the Z/2-
equivariant stable motivic homotopy category
(143)

g2y o @Zz A é?n/iz - @ZZ X é?n/iz — B(G)* x G!*) —» BGL, — T(1).

(The last arrow is the 0-section.) Composing (143) with the cohomology
class wg, we obtain an element

(144) /lE €m +ya/—y—a/E-

Definition 27. We call a 7 /2-equivariant motivic (not necessarily strictly)
commutative associative unital ring spectrum Real-oriented if it satisfies the
condition (142), and if the class Ag of (144) is invertible as an element of
the coefficient ring.

Example: The Z/2-equivariant motivic spectrum MGLR clearly satisfies
the condition (142). It follows that the Z/2-equivariant motivic spectrum
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MGLR[A™'] (which can be constructed as an E..-ring spectrum by the meth-
ods of [10]) is real-oriented. We do not know if the Z/2-equivariant motivic
spectrum MGLR is real-oriented.

Now by Proposition 26, there exists a canonical map
(145) L — MGLR,[A171]

where L is the Lazard ring, and in the standard grading of the Lazard ring,
an element of degree 2k is carried by (145) to an element of degree k(1 +
va). Now since MGLR is additionally an E-ring spectrum, we may apply
the constructions of [10], in particular “kill” or “invert” any sequence of
elements in L in the spectrum MGLR[A™']. In analogy with similar spectra
in [18], we have in particular a Real algebraic Brown-Peterson spectrum
BPR, Real algebraic Johnson-Wilson spectra BPR(n)“¢, the algebraic ER-
theories ER(n)¥¢, and algebraic Real Morava K-theories KR(n)%¢ (these
occur one prime at a time, with most interest, as always, in the prime 2).

Remark: Finally, it is worth remarking that using the method of Hill, Hop-
kins and Ravenel [14], in certain cases, the motivic Real cobordism spec-
trum can be used to construct, in a completely geometric way, examples
of (homotopy) fixed point spectra with respect finite subgroups of Morava
stabilizer groups larger than Z/2. While the precise role of such objects
in motivic stable homotopy theory is not yet known, in view of the recent
paper of Behrens and Hopkins [4], such spectra may be considered a first
step on a long road toward the conjectured motivic analogues of topologi-
cal automorphic form spectra [3]. The point is that the construction [3] of
topological automorphic forms relies heavily on Lurie’s machinery, which
in turn seems to need calculational input currently not available in the mo-
tivic case.

Proposition 28. The spectrum KR is Real-oriented.

Proof: In effect, this amounts to proving the following result, which is also
of independent interest as a geometric construction of some of the period-
icity maps of Theorem 10. O

Lemma 29. The canonical inclusions SL, — GLy resp. Gp° — GL
(here, as before, we consider hyperbolic involution on S L,,GL.), viewed
as elements of KR48(S 7+ @@ posp KR48(S '7%) are invertible elements
in KR,

Proof: We need to prove that multiplications by the specified elements are
isomorphisms in KR*¢-cohomology. By a trick of Max Karoubi’s ([25],
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Lemma 2.4, Proposition 2.5, and p. 276), it suffices to prove this state-
ment with KR replaced by L-theory, or topological Hermitian K-theory
over R. This theory is the “topological realization” of KR¥¢ for F = R,
and can be viewed as a Z/2 X Z/2-equivariant spectrum over the complete
universe, whose 0-space is homotopically equivalent to BU X Z, and the
two Z/2-generators act on matrices by A — Aand A —» (AT)!, respec-
tively. (Again, note that the actions do not coincide, since the adjunction
is with respect to the hyperbolic form; in some sense, therefore, L-theory
combines the information of both real and Z/2-equivariant K-theory.) The
periodicity of this theory is treated by Max Karoubi in [26], part III. While
the Z*-graded indexing is not discussed in [26] and this periodicity is left as
an exercise (Proposition 3.3), the statement amounts to observing that the
representation given in the statement of our Lemma define irreducible Clif-
ford modules of the given signatures (in the case of S L,, the “equivariant
K-theory” Z/2-generator acts by minus on one of the coordinates). This
follows, nevertheless, from the well known fact that increasing signature by
(1, 1) or (2,2) corresponds to tensoring the Clifford algebra with an alge-
bra of matrices (again, the other Z/2-generator acts by minus on one of the
coordinates in the (2, 2)-case). O

We will next prove universality of MGLR[A~!] among Real-oriented mo-
tivic spectra. We will need a couple of preliminary lemmas. First, let us
consider the bilinear form

(146) b(x,y) = x1y1 — xX2y2 + ... £ XY

(we continue using the convention x = (xi, ..., X,), ¥ = (J1, ..., V»), and the
involution x; & y;; the signs in (146) alternate). Using this notation, let

£2n = £2;-
Then we have, in particular,
(147) 02 = Op, = O(n).

Consider also, from now on, GL, with involution A — (A , where the
transposition 7 is with respect to the form (146). Note that, as usual, in this
notation, GL, acts equivariantly on Q,,.

T)—l

Lemma 30. The action of GL, on Q, is transitive, and the stabilizer of the
point x° = (0, ...,0,1), y* = (0,...,0,+1) is GL,_; ¢ GL, (by inclusion of
the first n — 1 coordinates.

Proof: The only non-trivial statement is the transitivity. Clearly, GL, moves
any point on Q, to a point (x,y) where x = (0, ...,0, 1). Then we must have
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v, = x1 (the sign being determined by the parity of n). If we set

1
1
A=
1
a an—1 1
Then
1 —ay
1 +a,
ANH! = .
1 Fa,
1
Thus, we see that
0 0 Vi 0
_ cee T _] _
Al o [=] o P @D ot |=
1 1 1 1
when g; = (=1)"'y;. O

Lemma 31. The stabilizer group inclusion from Lemma 30 induces an
equivalence
B(*’ GLn—l ’ *) - B(*a GLna Qn)

Proof: We use the fact that Q, is covered by Zariski-open sets U; such that
if we denote by p, : GL, — Q, the projection
A ARy,

then
(p, Ui = U) = (U; X GL,; = U)).

We may put U; = {(x,y) € Q,|x;y; # 0} (the assertion is proved by the same
method as Lemma 30). O

Theorem 32. Let E be a real-oriented 7 |2-equivariant motivic spectrum.

Then

1. We have
(148) E*(BG!* x ... x BG)*) = E*[[t1,....t,]], t, € E'"""BG)*
and

(149) E*(BGL,) = E*[[cy, ..., call, ¢ € EX™*(BGL,)
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such that the canonical inclusion GY* x ... x GL* ¢ GL, maps ¢ to the k-th
elementary symmetric polynomial o (t, ..., t,).
2. There exists a map of (non-strict) ring spectra

(150) MGLR[A™'l > E

which induces the real orientation on E.

Proof: First note that 1. implies 2. This is because by Lemma 31, we have
a cofibration sequence

(151) BGLy,_ | — BGL,, — T(n)

where the first map corresponds to the inclusion of the first 2n — 1 coor-
dinates. By 1., in E*-cohomology, (151) induces a short exact sequence
which we know explicitly. ¢, is in the kernel, and gives a “Thom class”

(152) yore Ty 5 F.

Also by 1., these maps are compatible (up to homotopy) under the struc-
ture maps of MGLR (and also under the ring structure), so passing to the
homotopy direct limit over n gives a ring map

MGLR — E.

This factors into (150) because we assume A is invertible in E.
To prove 1., first note that we may factor (143) through

S A BGYF — T(1),

which gives a G,/*-orientation, which proves (148) by Proposition 26, as
well as (149) forn = 1.

The challenge in proving (149) for general n is that the usual tools (such
as Schubert cells) do not appear to be equivariant under the Z/2-involution.
Our main tool is the observation that the direct limit

(153) holim @, * ... Q,
n
is contractible, and we may obtain a spectral sequence in E*-cohomology
by filtering
(154) B(x,GL,, holim Q, * ....x Q,) = B(*,GL,, %)
n
by the number of factors of the join:
(155) Fy:= Fi(B(*,GL,, holim Q, *...% Qy)) = B(,GLy, Oy * ... * On).
7 k+ 1
+ 1 factors

Note further that by Lemma 31,
(156) Fo ~ BGL,,.
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In fact, more generally, thinking of
B(+,GLy, Qn) = B(*,GL,, %)

as a “sphere bundle”, and taking the “induced bundle” & via the inclusion
corresponding to the first n — 1 coordinates

GLn—l C GLn,

we can then interpret F;/F)_, as the “Thom space” of the k-fold Whitney
sum

£ED..OE.

Now this bundle is “E-orientable” via the inclusion
GL, xGL, - GL,

(and the assumption of A being invertible in E.), so using this we may de-
duce that the E*-spectral sequence associated with (155) (which one can
show to be a spectral sequence of E*-algebras) has

(157) E, = E'BGL,[c,].

Thus, we want to prove our statement by induction, showing that the spec-
tral sequence collapses to E;.
To this end, we use (148) and comparison with the corresponding spectral
sequence with GL, replaced by
CYex ... x GY*.

—————
n times

One proceeds in the same way, and shows that this spectral sequence, to
which (157) maps, has

(158) Ey = (E'[[f1, ... a1/ (11 - .. - 1)) cn]-

By the induction hypothesis, the map from (157) to (158) is an injection,
while (158) collapses by (148). Thus, (157) collapses, concluding the in-
duction step. O
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