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1. Amuse-gueule

1.1. The Hasse principle. Every good Pythagorean — or Babylonian cuneiform scribe, for that
matter — confronts the equation

a2 + b2 = c2

and wonders how to solve it with integers. Since the equation is homogeneous, it suffices to find
rational solutions and then clear denominators. This leads to the idea of solving

x2 + y2 − z2 = 0

with (x, y, z) ∈ Q3. More generally, given a homogeneous quadratic polynomial f(x1, . . . , xn)
with coefficients in a field k, we can ask whether there are solutions to

f(x1, . . . , xn) = 0

in kn. We always have the trivial solution x1 = · · · = xn = 0, so we should in fact search for
nontrivial solutions (x1, . . . , xn) ∈ kn r {(0, . . . , 0)}.

Such a polynomial f is called a quadratic form, and when f = 0 has nontrivial solutions (over
k), we call f isotropic (over k). Which integral quadratic forms f are isotropic over Q? A necessary
condition is that f be isotropic over R, and we will see later that there are simple and effective
tests of isotropicity over R. In order to discover stronger conditions, suppose that f is isotropic
over Q with nontrivial solution (x1, . . . , xn) ∈ Zn. Dividing out by the greatest common divisor
of the xi’s, we may assume that gcd(x1, . . . , xn) = 1 — a primitive integral solution. Reducing the
equation f = 0 modulo any integer m, we get

f(x1, . . . , xn) ≡ 0 (mod m).

We say that (x1, . . . , xn) is a primitive solution modulo m when gcd(x1, . . . , xn,m) = 1. This is now
(nearly) enough terminology to state the famous strong Hasse principle:

Theorem 1.1 (Strong Hasse principle — first version). Let f be a regular integral quadratic form. Then
f is isotropic over Q if and only if it is isotropic over R and has a primitive solution modulom for all positive
integers m.

The ring Z/mZ is unpleasant to work with whenm is composite because of the presence of zero
divisors. Theorem 1.1 is better approached via the p-adic numbers Qp, which we will develop in
due course. It is common to write R = Q∞ and call {positive prime integers} ∪ {∞} the set of
places of Q. This leads to the following reformulation of the strong Hasse principle:

Theorem 1.2 (Strong Hasse principle — second version). Let f be a regular1 quadratic form over Q.
Then f is isotropic over Q if and only if it is isotropic over Qp for all places p.

1.2. Fantastic forms and where to find them. The algebraic theory of quadratic forms has deep
roots in number theory, but quadratic — or bilinear — algebra is pervasive in modern mathemat-
ics.

Real quadratic forms and the second derivative test. Fix an open set U ⊆ Rn and suppose f : U → R
has continuous second order partial derivatives. The Hessian H(x) of f at a point x ∈ U is the
n×n real matrix of second order partial derivatives of f evaluated at x. If x0 ∈ U is a critical point
of f , then f(x0) + (x− x0)TH(x0)(x− x0) is a good approximation to f in a neighborhood of x.

Since H(x0) is a symmetric matrix, q(x) = xTH(x0)x is a (real) quadratic form. If q is positive
definite (so q(x) ≥ 0 with equality only for x = 0), then f attains a local minimum at x0; if q is
negative definite, then f attains a local maximum at x0; if q is regular and indefinite, then f has a

1We will define regularity properly quite soon, but not yet. Loosely speaking, a quadratic form is regular when you
cannot eliminate variables via a change of basis.
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saddle point at x0; and finally if q is not regular then the second derivative test is inconclusive at
x0.

Later, we will see that regular real quadratic forms are determined (up to isometry) by dimension
and signature. This is the content of Sylvester’s law of inertia.

Pfister forms and the level of a field. Suppose that −1 is a sum of squares in a field k. The level of k
is the smallest integer s(k) such that −1 is a sum of s squares in k. Remarkably, s(k) is always a
power of 2. The proof of this result depends on Pfister’s theory of multiplicative quadratic forms.

Intersection forms on even-dimensional manifolds. A closed oriented 4k-manifold M has an intersec-
tion (symmetric bilinear) form

H2k(M ; k)×H2k(M ; k)→ H2k(M ; k)

where H2k(M ; k) is the “middle homology group” of M with coefficients in a field k. Shortly, we
will see that symmetric bilinear forms are in bijective correspondence with quadratic forms when
the characteristic of k is not 2. The intersection form is a powerful tool for studying the topology
of closed manifolds.

Enumerative geometry. Loosely speaking, a (smooth) algebraic variety over a field k is a subset of kn

cut out by some number of polynomial equations (without singularities). Classical enumerative
geometry counts the number of certain types of structures (e.g., lines) on particular classes of
complex smooth algebraic varieties (e.g., cubic surfaces in P3

C). Indeed, a famous result says that
there are exactly 27 lines on every smooth cubic surface in P3

C. The proof of this result proceeds
via computation of a certain “self-intersection” number as an Euler characteristic of an associated
vector bundle.

Recent work of Kass–Wickelgren and Levine shows how similar results can be obtained over
any field when we “count” with quadratic forms instead of integers. Taking the dimension of the
quadratic forms in question recovers the classical results over C.

2. SOME LINEAR ALGEBRA

In the next two lectures, we will review some important concepts from linear algebra necessary
for our study of quadratic forms. Henceforth, k will always denote a field. (At some point we will
also require that the characteristic of k is not 2, but we do not need this assumption yet.)

Recall that a k-vector space V is an Abelian group (V,+) along with a scalar multiplication k ×
V → V satisfying the usual distributivity and associativity axioms. For a vector v ∈ V and scalar
λ ∈ k, the scalar product of v by λ is denoted λ · v or λv.

2.1. Linear transformations and Hom spaces. Given k-vector spaces V and W , a linear transfor-
mation (or k-linear map) from V to W is a function f : V → W such that f(λv + w) = λf(v) + f(w)
for all λ ∈ k and v, w ∈ V .

Definition 2.1. The set of k-linear transformations from V toW is denoted Homk(V,W ) (or Hom(V,W )
if the field is clear from context). When equipped with pointwise addition and scalar multiplica-
tion, Homk(V,W ) becomes a vector space called a Hom space.

By pointwise addition and scalar multiplication, we mean that for f, g ∈ Homk(V,W ), v ∈ V ,
and λ ∈ k,

(f + g)(v) = f(v) + g(v),

(λ · f)(v) = λ · (f(v)).
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2.2. Bases and matrices. A basis of a k-vector space V is a subset B ⊆ V of vectors which are
linearly independent and span V . Every vector space has a basis, the cardinality of every basis is
the same, and this cardinality is called the dimension of V . Linear transformations are determined
by values on a basis in the following sense.

Proposition 2.2. Let V be a k-vector space with basis B and let W be another k-vector space. Then
there is a bijection

WB −→ Homk(V,W )

where WB is the set of functions from B to W .

It is easy to see that restricting a linear transformation f : V → W to B gives a function in
the opposite direction. The special part of the proposition is that any function B → W extends
uniquely to a linear transformation V → W . This is sometimes expressed diagramatically by
saying that for every function f : B → W there is a unique linear tranformation f̃ : V → W such
that the diagram

B W

V

f

f̃

commutes (where B → V is the inclusion function).2

If B = {vi | i ∈ I} ⊆ V is a basis and v ∈ V , then there is a unique way to express v as a linear
combination of elements of B, v =

∑
i∈I λivi. Suppose now that f : V →W is a linear transforma-

tion between finite-dimensional vector spaces with ordered bases {v1, . . . , vn} and {w1, . . . , wm},
respectively. The matrix of f with respect to these ordered bases is the m× n array of scalars

A =


λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n
...

...
. . .

...
λm1 λm2 · · · λmn


where f(vi) =

∑m
j=1 λjiwj . In other words, the i-th column of A consists of the coordinates of

f(vi) with respect to the ordered basis {w1, . . . , wm}. Matrix multiplication is defined so that
composition of linear transformations corresponds to multiplication of the corresponding matrices
(after choosing ordered bases). We denote the set of m × n matrices over k by Mm×n(k) and give
it the usual vector space structure.

2.3. Direct sum. We may combine two k-vector spaces via the operation of direct sum. More
generally, we can form the direct sum of an infinite collection of k-vector spaces.

Definition 2.3. Given k-vector spaces V and W , their direct sum, V ⊕W , is the Cartesian product
V ×W equipped with termwise addition and scalar multiplication: (v, w)+(v′, w′) = (v+v′, w+w′)
and λ(v, w) = (λv, λw).

If {Vi | i ∈ I} is a set of k-vector spaces, then
⊕

i∈I Vi is the subset of
∏
i∈I Vi in which all but

finitely many coordinates are 0; it is also equipped with termwise addition and scalar multiplica-
tion.

The set
∏
i∈I Vi is also a vector space, but it has different formal properties when I is infinite.

Direct sum has the following universal property.

2This discussion puts us ε away from talking about a vector space as being free on its basis in categorical language,
but to do so properly we would also have to introduce the notion of naturality.
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Proposition 2.4. If {Vi | i ∈ I} is a set of k-vector spaces and W is another k-vector space, then
there is an isomorphism

Homk

(⊕
i∈I

Vi,W

)
−→

∏
i∈I

Homk(Vi,W ).

You should be able to easily write down the appropriate map, and you will verify this proposi-
tion for 2-fold direct sums in your homework.

If I is a set and V is a vector space, we will write V ⊕I for the direct sum
⊕

i∈I V . If I =

{1, . . . , n}, we will write V ⊕n for V ⊕I . Finally, if V = k, then we may write kn for k⊕n, depending
on mood. The standard (ordered) basis for kn is {e1, . . . , en}where ei is the n-tuple with 1 in the i-th
position and 0’s elsewhere. If not explicitly mentioned, we will use the standard ordered bases for
kn and km when representing a linear transformation kn → km as a matrix.

2.4. Duals. Dual vector spaces play an important role in linear algebra and an outsized one in the
theory of symmetric bilinear and quadratic forms.

Definition 2.5. The k-linear dual of a k-vector space V is the Hom space

V ∗ = Homk(V, k).

Elements of V ∗ are called linear functionals or dual vectors.

There is a canonical map
V −→ (V ∗)∗

v 7−→ (f 7→ f(v))

which is always injective and is an isomorphism when V is finite-dimensional. (We call the
map canonical because it does not depend on the choice of a basis or coordinates.) For V finite-
dimensional, it is also the case that V ∼= V ∗, but this isomorphism in non-canonical. Indeed, after
choosing an ordered basis {v1, . . . , vn} of V , we create a dual basis {v∗1, . . . , v∗n} where v∗i (vj) is ei-
ther 1 or 0 depending on whether j = i or j 6= i. (This is a typical use of Proposition 2.2 — make
sure you understand how it is being invoked.) It is straightforward to prove that {v∗1, . . . , v∗n} is a
basis of V ∗ and the linear map taking vi to v∗i is an isomorphism.

Given a linear transformation f : V → W , we can form the dual transformation f∗ : W ∗ → V ∗

which takes g : W → k to the composite linear functional g ◦ f . In your homework, you will prove
that this defines an injective linear transformation

Homk(V,W ) −→ Homk(W
∗, V ∗)

which is an isomorphism when both vector spaces are finite-dimensional.

3. THE QUADRATIC SQUARE: QUADRATIC FORMS, SYMMETRIC MATRICES, QUADRATIC SPACES,
AND SYMMETRIC BILINEAR FORMS

Henceforth, we adopt the convention that k is a field of characteristic different from 2, and that
any other “arbitrary” field does not have characteristic 2. In many cases, this assumption will
not be necessary, but it is crucial for our impending equivalence between symmetric bilinear and
quadratic forms.

Our goal currently is to define four structures, all different but congruent vertices of the same
square. We begin with the objects discussed in our amuse-guele, quadratic forms.
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Definition 3.1. An n-ary quadratic form over k is a polynomial f ∈ k[x1, . . . , xn] that is homogeneous
of degree 2,

f(x1, . . . , xn) =
n∑

i,j=1

λijxixj

where not all of the λij ∈ k are 0.

A presentation of the above form has some redundancy: x2+xy+2yx+y2 = x2+4xy−yx+y2, &
c. We rectify this by symmetrizing our coefficients. Let λ′ij = 1

2(λij +λji). (This uses our char k 6= 2
assumption!) Then

f(x1, . . . , xn) =
n∑

i,j=1

λ′ijxixj

and λ′ij = λ′ji. The example form above has symmetric presentation x2 + 3
2xy + 3

2yx+ y2.
In this fashion, every n-ary quadratic form over k determines a unique symmetric n × n matrix

Af = (λ′ij)
n
i,j=1 ∈ Symn×n(k) ⊆Mn×n(k). Additionally, an n-ary quadratic form may be recovered

from a nonzero symmetric matrix A ∈ Symn×n(k). Indeed, let x denote the column vector with
entries x1, x2, . . . , xn and define

fA(x) = x>Ax.

It is easy to check that fA is an n-ary quadratic form, and the assignments f 7→ Af and A 7→ fA
are mutually inverse bijections between n-ary quadratic forms over k and Symn×n(k)r{0}. These
are the first two faces of our tetrahedron.

An n-ary quadratic form f also defines a quadratic map qf : kn → k given by evaluation of f . This
function is quadratic in the sense that qf (λx) = λ2qf (x) for all λ ∈ k and x ∈ kn. The following
definition abstracts this behavior from the vector space kn to an arbitrary finite-dimensional k-
vector space.

Definition 3.2. A quadratic space over k is a finite-dimensional k-vector space V equipped with a
function q : V → k satisfying q(λx) = λ2q(x) for all λ ∈ k, x ∈ V , and such that the polarization of
q,

Bq : V × V −→ k

(x, y) 7−→ 1

2
(q(x+ y)− q(x)− q(y)),

is a symmetric bilinear form.

Definition 3.3. A symmetric bilinear form on a k-vector space V is a function B : V × V → k which
is

(1) symmetric: B(x, y) = B(y, x) for all x, y ∈ V , and
(2) bilinear: linear in each variable.

The Gram matrix of a symmetric bilinear form B relative to an ordered basis v1, . . . , vn of V is

AB = (B(vi, vj))
n
i,j=1 ∈ Symn×n(k).

We may depolarize a symmetric bilinear form B : V × V → k to create a quadratic map

qB : V −→ k

x 7−→ B(x, x).

It is straightforward to check that polarization and depolarization are mutually inverse.
We may also produce a symmetric bilinear form from a symmetric matrix. Indeed, given A ∈

Symn×n(k), the map kn × kn → k taking (x, y) 7→ x>Ay is symmetric bilinear.
6



We can summarize the above definitions and relations with the following diagram:

(�)

{quadratic forms} {symmetric matrices}

{quadratic spaces} {symmetric bilinear forms}.

( 1
2

(λij+λji))i,j

eval

x>Ax

x>Ay

polarize

choose basis Gram

depolarize

While the composable horizontal arrows are inverse bijections, the vertical arrows involve coordi-
natization and are only inverses if we restrict to vector spaces of the form kn with standard ordered
basis. We will see, though, that when we consider each structure up to an appropriate notion of
isomorphism, all arrows become bijections.

Example 3.4. It will be instructive to chase a particular quadratic form, say x2−4xy+3y2, through
these transformations. Expressed symmetrically, this is the same as x2 − 2xy − 2yx + 3y2 with

symmetric matrix
(

1 −2
−2 3

)
. We can then check that

(
x y

)( 1 −2
−2 3

)(
x
y

)
= x2 − 4xy + 3y2,

as expected.
The associated quadratic space is (k2, q) where q is the function k2 → k given by xe1 + ye2 7→

x2 − 4xy + 3y2. Polarizing this quadratic map, we get

B((x, y), (x′, y′)) =
1

2
(q(x+ x′, y + y′)− q(x, y)− q(x′, y′)) = xx′ − 2xy′ − 2x′y + 3yy′.

Evaluating at pairs of standard basis vectors, we get a Gram matrix
(

1 −2
−2 3

)
like before. Finally,

depolarizing B gives

B((x, y), (x, y)) = x2 − 2xy − 2xy + 3y2 = x2 − 4xy + 3y2,

as anticipated.

4. EQUIVALENCE, CONGRUENCE, AND ISOMETRY

We now undertake the task of deciding when to consider two quadratic forms (or quadratic
spaces, or symmetric matrices, or symmetric bilinear forms) to be the same. Let f and g be n-ary
quadratic forms over k. We say that f is equivalent to g if there is an invertible matrix B ∈ GLn(k)
such that

f(x) = g(Bx).

This immediately translates into a condition on associated symmetric matrices. Indeed, we
learn that

x>Afx = (Bx)>Ag(Bx) = x>(B>AgB)x,

which implies the matrix equation
Af = B>AgB.
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We call two symmetric matrices A,A′ ∈ Symn×n(k) congruent if there exists B ∈ GLn(k) such that
A = B>A′B. We see then that equivalence of forms corresponds to congruence of symmetric
matrices.

Example 4.1. Consider the change of coordinates effected by the matrix B =

(
1 1
1 −1

)
. Applied

to the form g(x, y) = xy we get

g

(
B

(
x
y

))
= g(x+ y, x− y) = (x+ y)(x− y) = x2 − y2.

Thus g is equivalent to h(x, y) = x2 − y2. The corresponding matrix congruence is

Ah =

(
1 0
0 −1

)
=

(
1 1
1 −1

)(
0 1/2

1/2 0

)(
1 1
1 −1

)
= B>AgB.

Suppose that (V, q) and (V ′, q′) are quadratic spaces. We call them equivalent if there is a linear
isomorphism f : V → V ′ such that q = q′ ◦ f . This clearly corresponds to equivalence of quadratic
forms in the quadratic square (�) of the previous section.

If (V,B) and (V ′, B′) are symmetric bilinear forms, we say they are isometric if there is a linear
isomorphism f : V → V ′ such that

B′(f(x), f(y)) = B(x, y)

for all x, y ∈ V . Given an ordered basis {v1, . . . , vn} of V , we know that {f(v1), . . . , f(vn)} is an
ordered basis of V ′ since f is an isomorphism. It follows that the Gram matrices of (V,B) and
(V ′, B′) agree when we choose f -compatible bases of V and V ′.

We can now see that the four corners of the quadratic square (�) are the same when viewed
up to equivalence (of quadratic forms or spaces), congruence (of symmetric matrices), or isometry
(of symmetric bilinear forms). We will freely move between these perspectives as convenience
dictates. The coordinate-free worlds of quadratic spaces and symmetric bilinear forms are often
convenient in theoretical arguments, with symmetric bilinear forms of prime importance when
we adopt a geometric perspective. (After all, a symmetric bilinear form is nearly an inner product
space.) Quadratic forms and symmetric matrices conveniently package their data in a manner eas-
ily appreciated by both the human visual and computer algebra systems, and cannot be neglected.

5. REGULAR FORMS

In this section, we will use the geometric perspective granted by symmetric bilinear forms to
understand the regularity condition advertised in the amuse-guele.

Theorem 5.1. Let (V,B) be a symmetric bilinear form with Gram matrix A and quadratic form f (relative
to some ordered basis). Then the following statements are equivalent:

(a) A ∈ GLn(k) (i.e., detA 6= 0),
(b) x 7→ B( , x) defines an isomorphism V → V ∗,
(c) for x ∈ V , if B(x, y) = 0 for all y ∈ V , then x = 0.

Definition 5.2. If any (and hence all) of the equivalent conditions in Theorem 5.1 hold, we call
(V,B), A, f , and the associated quadratic space (V, q) regular or nonsingular. We also call the 0
vector space with trivial symmetric bilinear form, symmetric matrix, quadratic form, or quadratic
space regular or nonsingular. Quadratic objects which are not regular are called singular or degener-
ate.
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Proof of Theorem 5.1. We show that (a) ⇐⇒ (b) and (b) ⇐⇒ (c). First suppose that A ∈ GLn(k) is
the Gram matrix for B relative to an ordered basis α = {v1, . . . , vn} of V . We may determine the
matrix for f : x 7→ B( , x) by computing

f(vj) =
n∑
k=1

Akjv
∗
k.

Indeed, (
∑n

k=1Akjv
∗
k) (vi) = Aij = B(vi, vj) = (f(vj))(vi). It follows that the matrix for f with

respect to α and α∗ is equal to A. Since A ∈ GLn(k), we know that f has an inverse (the linear
transformation induced by A−1 relative to bases α∗ and α) and is an isomorphism.

Now assume that f : x 7→ B( , x) is an isomorphism. As above, the matrix for f relative to α
and α∗ is equal to A. Since f is invertible, so is A.

Continue to suppose that f : x 7→ B( , x) is an isomorphism, now with the goal of deducing (c).
If for some x ∈ V , B(x, y) = 0 for all y ∈ V , then B(y, x) = 0 for all y ∈ V as well by symmetry of
B. It follows that f(x) = 0, the trivial linear functional. Since f is an isomorphism, we know that
x = 0, which proves (c).

Finally, suppose that (c) is true. Invoking the symmetry of B, we immediately see that f : x 7→
B( , x) is injective. Since V and V ∗ have the same dimension, we conclude that f is an isomor-
phism. �

Example 5.3. The forms x2 + y2 and xy are regular. Indeed, they have matrices
(

1 0
0 1

)
and(

0 1/2
1/2 0

)
with determinants 1 and −1/4, respectively.

Example 5.4. The form x2 + 2xy + y2 is singular. It has matrix
(

1 1
1 1

)
with determinant 0. Note

that x2 + 2xy + y2 = (x+ y)2, and thus can be expressed as a regular quadratic form in the single
variable x + y. We will investigate this idea further when we study totally isotropic spaces and
Witt’s decomposition theorem.

For the remainder of this section, we investigate some geometric constructions that are espe-
cially nice when working with regular symmetric bilinear forms.

Suppose that (V,B) is a symmetric bilinear form and that U ≤ V is a subspace of V . Restricting
B to U × U results in another symmetric bilinear form (U,B|U×U ).

Definition 5.5. In the above setting, the orthogonal complement of U is

U⊥ = {x ∈ V | B(x, U) = 0}.

Note that (V,B) is regular if and only if V ⊥ = 0. The orthogonal complement of V is sometimes
called the radical of (V,B).

Proposition 5.6. Suppose that (V,B) is a regular quadratic space and that U is a subspace of V .
Then
(a) dimU + dimU⊥ = dimV , and
(b) (U⊥)⊥ = U .

Proof. Since (V,B) is regular, we know that f : V → V ∗, x 7→ B( , x) is an isomorphism. The reader
may check that the dual inclusion i : U ↪→ V is a surjective map i∗ : V ∗ → U∗. Let g = i∗ ◦ f : V →
U∗, which is surjective since f is an isomorphism and i∗ is surjective. By the rank-nullity theorem,

dimV = dim ker g + dimU∗ = dim ker g + dimU.
9



By definition,
ker g = {v ∈ V | f(v)(u) = 0 for all u ∈ U}.

We also have f(v)(u) = B(u, v), whence ker g = U⊥. Substituting into our previous dimension
equation gives

dimV = dimU⊥ + dimU,

so we have proved (a).
For (b), first note that we always have U ⊆ (U⊥)⊥. An application of (a) to the subspace U⊥ ≤ V

gives
dimU⊥ + dim(U⊥)⊥ = dimV,

so dim(U⊥)⊥ = dimV − dimU⊥. Again by (a) (now applied to U ≤ V ), we see that the right-hand
side also equals dimU . �

Remark 5.7. Given that the dimensions of U and U⊥ add to give dimV , it might be tempting to

guess that V = U ⊕U⊥. This is false in general. Consider the bilinear form given by
(

1 0
0 −1

)
and

let U denote the span of (1, 1). In this case, U⊥ = U .

Remark 5.8. The regularity hypothesis in Proposition 5.6 is essential. IfB is the 0 map (and V 6= 0),
then V ⊥ = V and dimV + dimV ⊥ = 2 dimV .

6. DIAGONALIZATION OF FORMS

First, fix the following notation and terminology: k× = k r {0} is the multiplicative group of
units in k and k� = {λ2 | λ ∈ k×} is the subgroup of squares in k×. We call k×/k� the group of
square classes of k.

Definition 6.1. Let f be a quadratic form over k and take λ ∈ k×. We say that f represents λ ∈ k×

if there exist x1, . . . , xn ∈ k such that f(x1, . . . , xn) = λ. We write Dk(f) = D(f) for the set of
elements of k× represented by f ; in other words,

Dk(f) = {f(x) | x ∈ kn}r {0}.

Proposition 6.2. The following three statements about D(f) are true.
(a) The set D(f) only depends on the equivalence class of f .
(b) The set D(f) is a union of cosets in k×/k�.
(c) The set D(f) is closed under taking inverses.

Proof. To prove (a), suppose that g is equivalent to f , with f(x) = g(Bx) for some B ∈ GLn(k).
Since B induces a bijection from kn r {0} to itself, we see that D(f) = D(g).

To prove (b), we need to show that for all a ∈ k×, a2λ ∈ D(f) whenever λ ∈ D(f). If λ ∈ D(f),
then λ = f(x) for some x ∈ kn r {0}, and hence f(ax) = a2f(x) = a2λ.

Part (c) follows easily from (b) since λ−1 = (λ−1)2λ. �

Remark 6.3. The set D(f) is not a subgroup of k× in general. For instance, the form −x2 does not
represent 1 over Q or R. The set D(f) also need not be closed under multiplication, as can be seen
by considering the form f = x2 + y2 + z2 over Q. Then 1 = 12 + 02 + 02, 2 = 12 + 12 + 02, and
14 = 32 +22 +12 are inD(f). Hence 2−1 ∈ D(f) as well. IfD(f) were closed under multiplication,
the 7 = 2−1 · 14 would be in D(f). A consequence of the strong Hasse principle Theorem 1.2 is
that

D(f) = {λ ∈ Q× | λ > 0 and − a is a square in Q2}.
After introducing the p-adic rationals and proving Theorem 1.2, we will show that −7 /∈ Q�

2 , so
D(f) is not closed under multiplication.
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Remark 6.4. When D(f) is closed under multiplication, we automatically get that 1 ∈ D(f) and
we call f a group form over k. For instance, the formula

(x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2

due to Brahmagupta (7th centure C.E.) and Fibonacci (1202) implies that x2
1 + x2

2 is a group form.
In 1748, Euler discovered the identity

(x2
1 + x2

2+x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) =

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2+

(x1y3 − x2y4 + x3y1 + x4y2)2 + (x1y4 + x2y3 − x3y2 + x4y1)2

so x2
1 + x2

2 + x2
3 + x2

4 is also a group form. Using the octonions (an 8-dimensional, non-associative
number system), Graves (1843) and Cayley (1845) found the eight-square identity

(x2
1 + · · ·+x2

8)(y2
1 + · · ·+ y2

8) =

(x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8)2+

(x1y2 + x2y1 + x3y4 − x4y3 + x5y6 − x6y5 − x7y8 + x8y7)2+

(x1y3 − x2y4 + x3y1 + x4y2 + x5y7 + x6y8 − x7y5 − x8y6)2+

(x1y4 + x2y3 − x3y2 + x4y1 + x5y8 − x6y7 + x7y6 − x8y5)2+

(x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y2 + x7y3 + x8y4)2+

(x1y6 + x2y5 − x3y8 + x4y7 − x5y2 + x6y1 − x7y4 + x8y3)2+

(x1y7 + x2y8 + x3y5 − x4y6 − x5y3 + x6y4 + x7y1 − x8y2)2+

(x1y8 − x2y7 + x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1)2

which was originally discovered by Degen in 1818 via different methods.
A remarkable theorem of Pfister (1965) — proved below as Corollary 18.12 — states that x2

1 +
· · ·+ x2

2n is a group form for any n ≥ 1. This theorem is all the more remarkable given Hurwitz’s
theorem (1898) which states that

(x2
1 + · · ·+ x2

m)(y2
1 + · · ·+ y2

m) = z2
1 + · · ·+ z2

m

for some zi homogeneous quadratic polynomials in x1, . . . , xm, y1, . . . , ym if and only m = 2, 4, or
8; naturally, Pfister’s zi are not quadratic forms. We will study Pfister’s theory later in the course.

Given symmetric bilinear forms (V,B) and (V ′, B′) over k, we may form their orthogonal sum,
V ⊥ V ′, consisting of the vector space V ⊕V ′ equipped with the mapB ⊥ B′ : (V ⊕V ′)×(V ⊕V ′)→
k given by

(B ⊥ B′)((x1, y1), (x2, y2)) = B(x1, x2) +B′(y1, y2),

which is clearly symmetric and bilinear. This has the effect of making V ⊕ 0 and 0⊕V ′ orthogonal
to each other, with B ⊥ B′ restricting on these subspaces to B and B′. Observe further that on
associated quadratic spaces we get

qB⊥B′(x, y) = (B ⊥ B′)((x, y), (x, y))

= B(x, x) +B′(y, y)

= qB(x) + qB′(y),

leading to a natural definition of orthogonal sum of quadratic spaces and forms. The definition
on symmetric bilinear forms also mandates that orthogonal sum of symmetric matrices should be

11



block sum:

A ⊥ A′ =
(
A 0
0 A′

)
.

From this description, we easily see that the orthogonal sum of two forms is regular if and only if
both of the constituent forms is regular.

Definition 6.5. A quadratic form f is diagonal when it is of the form λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n. We

denote this form by 〈λ1, . . . , λn〉.

Note that 〈λ1, . . . , λn〉 has a matrix of symmetrized coefficients which is diagonal with entries
λ1, . . . , λn on the diagonal. We also have

〈λ1, . . . , λn〉 = 〈λ1〉 ⊥ · · · ⊥ 〈λn〉 .
We will use the following two lemmata on our way to proving that every quadratic form is

equivalent to a diagonal one.

Lemma 6.6. Suppose U and U ′ are linear subspaces of V and that (V,B) is a symmetric bilinear
form. If U ∩ U ′ = 0, dimU + dimU ′ = dimV , and B(U,U ′) = 0, then V ∼= U ⊕ U ′ and B ∼= B|U ⊥
B|U ′ .

Proof. Homework. (Do not invoke any of the following material in your proof.) �

Lemma 6.7 (Representation Criterion). Let (V,B) be a symmetric bilinear form, and λ ∈ k×. Then
λ ∈ D(B) if and only if B ∼= 〈λ〉 ⊥ B′ for some other symmetric bilinear form (V ′, B′).

Proof. Suppose B ∼= 〈λ〉 ⊥ B′ and let q′ = qB′ . Then (〈λ〉 ⊥ q′)(1, 0) = λ. By Proposition 6.2(a), we
conclude that B also represents λ.

For the converse, suppose that λ ∈ D(B) with λ = q(v), where q = qB . Without loss of gen-
erality, we may assume that V is regular.3 Now U = span{v} ∼= 〈λ〉, and U ∩ U⊥ = 0. By
Proposition 5.6, dimU + dimU⊥ = dimV . By Lemma 6.6 we may conclude that

B ∼= 〈λ〉 ⊥ B|U⊥ .
�

Theorem 6.8 (Diagonalizability of quadratic forms). If (V,B) is a symmetric bilinear form over k, then
there exist λ1, . . . , λn ∈ k such that

B ∼= 〈λ1, . . . , λn〉 .

Proof. If D(B) = ∅, then B is the 0 form which can be written as 〈0, . . . , 0〉 where there are dimV
many 0’s. If D(B) 6= ∅, then there exists some λ ∈ D(B), whence Lemma 6.7 implies that B ∼=
〈λ〉 ⊥ B′, and this proves the theorem by induction. �

In order to lighten our notational load, we shall now start abusing notation and referring to a
symmetric bilinear form (V,B) as just V (rather thanB). This has the advantage of allowing use to
refer to the restriction of this form to a subspace U , namely (U,B|U ), as just U , without reference
to B|U .

Corollary 6.9. If (V,B) is a symmetric bilinear form and U is a subspace of V , then
(a) if U is regular, then V ∼= U ⊥ U⊥,
(b) if U is regular and U ′ is a subspace of V such that V ∼= U ⊥ U ′, then U ′ = U⊥, and
(c) if V is regular, then U is regular if and only if there exists U ′ ≤ V such that V ∼= U ⊥ U ′.

3The argument goes like this: There is a subspace W such that V = V ⊥ ⊕W = V ⊥ ⊥ W , and D(V ) = D(W ).
Clearly W is regular.
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Proof. To prove (a), note that regularity of U implies that U ∩ U⊥ = 0. Thus by Lemma 6.6, it
suffices to show that U and U⊥ span V . By Theorem 6.8, we may diagonalize U so that it has an
orthogonal basis u1, . . . , up with B(ui, ui) 6= 0 for all i (by regularity of U ). Given v ∈ V , use the
old Gram-Schmidt trick to construct

u′ = v −
p∑
i=1

B(v, ui)

B(ui, ui)
ui.

A straightforward computation show that B(u′, uj) = 0 for all j, whence u′ ∈ U⊥. We conclude
that

v = u′ +

p∑
i=1

B(v, ui)

B(ui, ui)
ui

is in the span of U and U⊥.
It is now easy to show that (a) implies (b). If V = U ⊥ U ′, then U ′ ⊆ U⊥ and dimV =

dimU + dimU ′. By (a), dimV also equals dimU + dimU⊥, so dimU ′ = dimU⊥, and we conclude
that U ′ = U⊥.

The left-to-right direction of (c), follows by taking U ′ = U⊥ and applying (a). For the right-to-
left direction, suppose V is regular, U ≤ V , and V ∼= U ⊥ U ′. By Theorem 6.8, we may diagonalize
U ∼= 〈λ1, . . . , λm〉 and U ′ ∼= 〈λm+1, . . . , λn〉, whence V ∼= 〈λ1, . . . , λn〉. If any of the λi = 0, then V
is not regular, contradicting a hypothesis. Thus U has a diagonalization without 0’s and hence is
regular. �

Remark 6.10. It is fruitful to compare part (c) of the corollary with Proposition 5.6(a). While (for
(V,B) regular) we always have the dimension formula dimU + dimU⊥ = dimV , we only have
the decomposition U ⊥ U⊥ ∼= V when U is a regular subspace.

Having deduced these theoretical corollaries, let’s return to diagonalization itself and think
about how to explicitly determine the diagonalization of a quadratic form.

Example 6.11. Consider a binary quadratic form ax2 + bxy + cy2 for which a 6= 0. Completing the
square produces the formula

ax2 + bxy + cy2 =
1

4a

(
(2ax+ by)2 − (b2 − 4ac)y2

)
.

We conclude that

ax2 + bxy + cy2 ∼=
〈

1

4a
,
−(b2 − 4ac)

4a

〉
.

Since
〈
λ2
〉 ∼= 〈1〉 and

〈
λ−1

〉 ∼= 〈λ〉 for all λ ∈ k×, we can rewrite this as

ax2 + bxy + cy2 ∼=
〈
a,−a(b2 − 4ac)

〉
.

If a = 0 and c 6= 0, a symmetric argument gives that

bxy + cy2 ∼=
〈
c,−cb2

〉
.

If b 6= 0, this is equivalent to 〈c,−c〉 ∼= 〈1,−1〉 = h.
The final nontrivial case is a = c = 0 and b 6= 0. We have already seen that xy ∼= h, and we leave

it as an exercise to show that bxy ∼= h as well.

Example 6.12. While less well-known, we may actually complete the square in more than two
variables. Here we exhibit this process by example and trust that the reader can generalize it.
Consider the form

f = x2 − 2

3
xy + 5xz + 3y2 + 2yz − 8z2.
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In order to complete the square relative to x, we note that there are mixed terms −2
3xy and 5xz

involving x, and that(
x− 1

3
y +

5

2
z

)2

= x2 − 2

3
xy + 5xz +

1

9
y2 − 5

3
yz +

25

4
z2.

As such, letting x̃ = x− 1
3y + 5

2z, we may rewrite the original form f as

f = x̃2 +
26

9
y2 +

11

3
yz − 57

4
z2.

Applying the previous example to the form 26
9 y

2 + 11
3 yz −

57
4 z

2 reveals that

f ∼=
〈

1,
26

9
,−41678

81

〉
.

Since 9 and 81 are squares, this reduces to

f ∼= 〈1, 26,−41678〉 .

Remark 6.13. In the previous example, we always had access to a squared variable from which
to start completing the square. If our form only consists of mixed terms, we would have to first
perform a linear change of variables to produce a square and then continue with completing the
square.

What if our form is given to us as a symmetic matrix? or if we simply prefer working with
matrices? With a couple of extra observations, the proof of Theorem 6.8 may be turned into an
algorithm that works well in this context.

Begin with an n × n symmetric matrix A ∈ Symn×n(k) and suppose that λ = A11 (the top left
entry) is nonzero. (This is equivalent to BA(e1, e1) 6= 0, i.e., to the assumption that we may take
the standard basis vector e1 as part of the orthogonal basis in the proof of Theorem 6.8. We will
handle the case λ = 0 shortly.) We may decompose A as

A =

(
λ v>

v A′

)
where v ∈ Rn−1 is a column vector and A′ ∈ Sym(n−1)×(n−1)(k). Define

A2 = A′ − λ−1vv>

and let

B =

(
1 λ−1v>

0 In−1

)
∈ GLn(k).

A direct computation shows that

A = B>
(
λ 0>

0 A2

)
B.

(This should be compared with the “Gram-Schmidt” step in the proof of Corollary 6.9(a).)
If λ = A11 = 0, then we need to change variables to get something nonzero in the upper left

corner. There are many ways to do so, and we will only briefly sketch one method: Pick i and j
such that a = Aij 6= 0. Assume for simplicity that neither i nor j is 0. Change variables so that
xi 7→ x1 +x2, xj 7→ x1−x2, x1 7→ xi, and x2 7→ xj while all other variables are fixed. This results in

a symmetric matrix with upper left-hand block
(

2a 0
0 −2a

)
. We may then proceed as above. (We

leave it to the reader to work out the cases in which one or both of i and j are not distinct from 1
and 2.)
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Applying the above process iteratively results in a diagonalization of A. We exhibit this for a
specific 3× 3 symmetric matrix presently.

Example 6.14. Consider the form f = 2xy + 4xz + 2yz which has matrix

A =

0 1 2
1 0 1
2 1 0

 .

The coordinate change x 7→ x+ y, y 7→ x− y, z 7→ z transforms A into1 1 0
1 −1 0
0 0 1

0 1 2
1 0 1
2 1 0

1 1 0
1 −1 0
0 0 1

 =

2 0 3
0 −2 1
3 1 0

 .

We now form

A2 =

(
−2 1
1 0

)
− 1

2

(
0
3

)(
0 3

)
=

(
−2 1
1 −9

2

)
and conclude that

A ∼=

2 0 0
0 −2 1
0 1 −9

2

 .

Either via another round of matrix manipulations or an application of Example 6.12, the right-
hand matrix is in turn congruent to 2 0 0

0 −2 0
0 0 −1

 .

We conclude that f ∼= 〈2,−2,−1〉 ∼= 〈1,−1,−1〉, where the final equivalence uses the observation
that 〈λ,−λ〉 ∼= h for all λ ∈ k×.

For some curious examples of diagonalizations of n-ary quadratic forms (n arbitrary), see T.Y.
Lam’s article [Lam99].

These algorithms are implemented in the computer algebra system SageMath. The relevant
documentation is available at this link.4 In order to diagonalize a quadratic form q (initialized
via the command QuadraticForm), one calls q.rational_diagonal_form(). While this is
convenient for checking one’s work, remember that there are many diagonalizations of a given
quadratic form.

Remark 6.15. Many multivariable calculus courses use the diagonalizability of real quadratic forms
in order classify critical points via the Hessian matrix. Curiously, almost all of these texts invoke
the spectral theorem which says that an n×n real matrix is orthogonally diagonalizable if and only
if it is symmetric. Here orthogonal diagonalizability of A means that there is an invertible matrix P
such that P−1 = P> and P−1AP is diagonal. While this argument is perfectly accurate, it might
leave the impression that diagonalization of real quadratic forms requires deep, analytical results
(like the spectral theorem). Nothing could be further from the truth. While the above discussion
might not be recognizable to an ancient Babylonian, the essential idea (completing the square)
would be familiar.

4https://doc.sagemath.org/html/en/reference/quadratic_forms/sage/quadratic_forms/
quadratic_form.html
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7. HYPERBOLIC SPACES

We have already seen the binary quadratic form h = x2 − y2 and exhibited its equivalence with
xy in Example 4.1. The name h is for hyperbolic, and we call the associated quadratic space the
hyperbolic plane. A quadratic space is a called a hyperbolic space if it is equivalent to an orthogonal
sum of hyperbolic planes, h ⊥ h ⊥ · · · ⊥ h = n 〈1,−1〉 ∼= n 〈1〉 ⊥ n 〈−1〉. (Here we use the
convention that n · f is the n-fold orthogonal sum of f with itself.) These simple spaces will play
an outsized role in the theory of quadratic forms, largely because of their connection to the notion
of isotropy.

Definition 7.1. Let (V,B) be a symmetric bilinear form and take 0 6= v ∈ V . We say that v is an
isotropic vector ifB(v, v) = 0, and otherwise we call v anisotropic. We call (V,B) an isotropic form if it
contains an isotropic vector, and otherwise we call (V,B) anisotropic. When B = 0, we call (V,B)
totally isotropic.

We need the notion of the determinant of a regular quadratic form in order to state the following
theorem. Given a regular quadratic form f , let Af ∈ Symn×n(k) denote its associated symmetric
matrix. We would like to create an invariant of the equivalence class of f out of the matrix de-
terminant det(Af ). Recall that the forms equivalent to f correspond to symmetric matrices of the
form B>AfB where B ∈ GLn(k), then note that

det(B>AfB) = det(B)2 · det(Af ).

Thus we make the following definition.

Definition 7.2. The determinant of a regular quadratic form f over k with associated symmetric
matrix Af is

det(f) = det(Af ) · k� ∈ k×/k�.

The preceding discussion shows that det(f) is constant on the equivalence class of f . Given
that orthogonal sum of quadratic forms corresponds to block sum of symmetric matrices, it is also
easy to see that

(7.3) det(f ⊥ g) = det(f) det(g) ∈ k×/k�.

Proposition 7.4. The determinant of a diagonal quadratic form is given by

det 〈λ1, . . . , λn〉 = λ1 · · ·λnk�.

Proof. The associated matrix is diagonal with entries λ1, . . . , λn along the diagonal. �

We are now ready to state a theorem linking the hyperbolic plane, isotropy, and determinants.
Recall that we will freely translate our definitions through the (�), thus the determinant of a sym-
metric bilinear form will be the square class of the determinant of its Gram matrix.

Theorem 7.5. Let (V,B) be a symmetric bilinear form with dimV = 2. Then the following statements are
equivalent:
(a) B is regular and isotropic,
(b) B is regular with detB = −1 · k�,
(c) B ∼= 〈1,−1〉,
(d) B corresponds to the equivalence class of the binary quadratic form xy.

Proof. We have already seen that (c) and (d) are equivalent in Example 4.1. We now check that (a)
implies (b). Choose an orthogonal basis v1, v2 of V . By regularity, µi = B(vi, vi) 6= 0 for i = 1, 2.
For an isotropic vector v ∈ V , write v = λ1v1 + λ2v2 and, without loss of generality, suppose that

16



λ1 6= 0. Then 0 = λ2
1µ1+λ2

2µ2, whence µ1 = −(λ2λ
−1
1 )2µ2. It follows that detB = µ1µ2·k� = −1·k�,

as desired.
We now check that (b) implies (c). The form B has a diagonalization 〈a, b〉 for some a, b ∈ k×,

and we know that detB = ab·k� = −1·k�. As such, b has the same square class as−a−1, which has
the same square class of −a. Thus B ∼= 〈a,−a〉, which is isometric to the symmetric bilinear form
corresponding to axy. This binary quadratic form clearly represents all elements of k×, hence so
does B. Thus B represents 1 and the Representation Criterion Lemma 6.7 implies that B ∼= 〈1, λ〉
with λ ≡ −1 (mod k�). Thus B ∼= 〈1,−1〉, as desired.

Finally, the implication (c) =⇒ (a) is trivial, so we have proven the theorem. �

Definition 7.6. If D(B) = k×, then we call B universal.

Remark 7.7. Every universal form is a group form.

Theorem 7.8. Let (V,B) be a regular symmetric bilinear form. Then
(a) every totally isotropic subspace U ≤ V of dimension r is contained in a hyperbolic subspace T ≤ V of

dimension 2r,
(b) V is isotropic if and only if V contains a hyperbolic plane, and
(c) if V is isotropic, then V is universal.

Proof. We prove (a) by induction on r. If r = 0, then U is contained in the 0-fold orthogonal sum
of hyperbolic planes. Let v1, . . . , vr be an orthogonal basis of U and let S = span{v2, . . . , vr}. Note
that U⊥ ⊆ S⊥. Since V is regular, we have

dimS⊥ = dimV − dimS > dimV − dimU = dimU⊥

by Lemma 6.6. Thus there exists a vector w1 orthogonal to v2, . . . , vr, but not orthogonal to v1.
In particular, v1, w1 are linearly indpendent vectors since B(v1, v1) = 0. The subspace H =
span{v1, w1} has determinant

detH = det

(
0 B(v1, w1)

B(v1, w1) B(w1, w1)

)
· k� = −1 · k�,

so H ∼= h by Theorem 7.5. By Corollary 6.9, we get that V = H ⊥ H⊥, and H⊥ is regular and
contains v2, . . . , vr. The proof of (a) now follows by induction.

We leave it as an exercise for the reader that (b) and (c) now follow easily. �

Remark 7.9. Universality of h can be checked directly via the identity

λ =

(
λ+ 1

2

)2

−
(
λ− 1

2

)2

.

Corollary 7.10 (First Representation Theorem). Let f be a regular quadratic form and let λ ∈ k×.
Then λ ∈ D(f) if and only if f ⊥ 〈−λ〉 is isotropic.

Proof. Without loss of generality, we may assume throughout that f = 〈λ1, . . . , λn〉.
First suppose that λ ∈ D(f). If λ =

∑
λix

2
i for some xi ∈ k, then

(∑
λix

2
i

)
+ (−λ) · 12 = 0, so

f ⊥ 〈−λ〉 is isotropic.
Conversely, suppose that f ⊥ 〈−λ〉 has isotropic vector (x1, . . . , xn+1). If xn+1 6= 0, then

λ =
∑

λi

(
xi
xn+1

)2

∈ D(f).

If xn+1 = 0, then (x1, . . . , xn) 6= 0 is an isotropic vector for f , whence D(f) = k×, so λ ∈ D(f). �

Corollary 7.11. Let f and g be regular quadratic forms of positive dimensions. Then f ⊥ g is
isotropic if and only if D(f) ∩ −D(g) 6= ∅.
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Proof. Begin by assuming that λ ∈ D(f) ∩ −D(g) with f(x) = λ and g(y) = −λ. Then (x, y) 6= 0 is
an isotropic vector for f ⊥ g.

Now assume that D(f) ∩ −D(g) 6= ∅. Without loss of generality, f and g are anisotropic.5

Suppose f(x) + g(y) = 0 where (x, y) 6= 0. Say x 6= 0. Then f(x) 6= 0 and f(x) ∈ D(f) ∩−D(g), as
desired. �

Corollary 7.12. For r > 0, the following are equivalent:
(a) Any regular quadratic form of dimension r over k is universal.
(b) Any quadratic form of dimension r + 1 over k is isotropic.

Proof. First suppose that all regular quadratic forms of dimension r over k are universal. Any
quadratic form f of dimension r + 1 over k has a diagonalization 〈λ1, . . . , λr+1〉. If all λi = 0, then
we certainly have an isotropic form. If some λi, say λr+1, is nonzero, then −λr+1 ∈ D(f), and the
previous corollary implies that f is isotropic, as desired.

Now suppose that all quadratic forms of dimension r + 1 over k are isotropic, and let f denote
a regular quadratic form of dimension r over k. For λ ∈ k×, we have that f ⊥ 〈−λ〉 is isotropic,
whence λ ∈ D(f) by the previous corollary. We conclude that f is universal, as desired. �

Remark 7.13. The u-invariant of a field k is

u(k) = max{dim f | f an anisotropic form over k} ∈ N ∪ {∞}.
By the above corollaries, we may also express u(k) as the minimum n such that forms of dimension
> n over k are isotropic, and also as the minimum n such that forms of dimension ≥ n over k are
universal. (Here we set min∅ =∞.)

8. WITT DECOMPOSITION AND CANCELLATION

Ernst Witt’s 1937 paper Theorie der quadratischen Formen in beliebigen Körpern (Theory of quadratic
forms in arbitrary fields) initiated the modern algebraic theory of quadratic forms. Amongst its
results are the decomposition and cancellation theorems which we introduce presently.

Theorem 8.1 (Witt decomposition theorem). Any quadratic space (V, q) is equivalent to an orthogonal
sum

(Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa)

where Vt is totally isotropic, Vh is hyperbolic, and Va is anisotropic; furthermore, the isometry types of Vt,
Vh, and Va are all uniquely determined.

Theorem 8.2 (Witt cancellation theorem). If f , f ′, and f ′′ are arbitrary quadratic forms, then

f ⊥ f ′ ∼= f ⊥ f ′′ implies f ′ ∼= f ′′.

Note that neither theorem has a regularity hypothesis. The decomposition theorem permits
a decomposition (as an orthogonal sum) of any quadratic space into pieces of proscribed forms,
and the cancellation theorem allows us to “cancel” the f from the original equivalence to deduce
f ′ ∼= f ′′.

Proof of Theorem 8.1. We begin with the decomposition

V = V ⊥ ⊥ V0

where V0 is any linear subspace such that V = V ⊥ ⊕ V0. Then V ⊥ is totally isotropic and V0 is
regular. If V0 is isotropic, then we may iteratively apply Theorem 7.8(b) to deduce that

V0 = (H1 ⊥ · · · ⊥ Hr) ⊥ Va
5If, say, g is isotropic, then g is universal and D(f) ∩ −D(g) = D(f) 6= ∅.
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where each Hi
∼= h and Va is anisotropic (but possibly 0). This proves existence of a Witt decom-

position of V .
To prove uniqueness, we invoke Witt cancellation Theorem 8.2. (We will prove Witt cancella-

tion shortly; naturally, that proof will not depend on Witt decomposition.) Suppose that there is
another “Witt decomposition”

V = V ′t ⊥ V ′h ⊥ V ′a.
Since V ′t is totally isotropic and Vh ⊥ V ′a is regular, we have

V ⊥ = (V ′t )⊥ ⊥ (V ′h ⊥ V ′a)⊥ = V ′t ,

so the totally isotropic pieces match. By Theorem 8.2, we now have Vh ⊥ Va ∼= V ′h ⊥ V ′a. Suppose
Vh ∼= m · h and V ′h

∼= m′ · h. Cancelling one h at a time, we conclude that m = m′ since Va and V ′a
are both anisotropic. Cancelling Vh and V ′h, we finally get that Va ∼= V ′a. �

Before we prove the Theorem 8.2, we give a name to 1
2 dimVh.

Definition 8.3. For a quadratic space (V, q) with Witt decomposition Vt ⊥ Vh ⊥ Va, call the natural
number 1

2 dimVh the Witt index of q.

Proposition 8.4. If (V, q) is a regular quadratic space, then the Witt index of q equals the dimension
of any maximal totally isotropic subspace of V .

Proof. Let U ≤ V be a maximal totally isotropic subspace of V , and set r = dimU . By Theorem 7.8,
there is a hyperbolic space T ≤ V such thatU ≤ T and dimT = 2r. Since T is regular, V = T ⊥ T⊥.
Note that T⊥ is anisotropic: if 0 6= x ∈ T⊥ is isotropic, then U + span{x} will be a larger totally
isotropic subspace of V , contradicting maximality of U . By the uniqueness portion of Theorem 8.1,
we know that the Witt index of q is half the dimension of T , which is r = dimU , as desired. �

In order to prove the cancellation theorem, we need to develop some facts about the orthogonal
group

O(V ) = Oq(V ) = {ϕ : V → V | ϕ an isometry of (V, q)}.
of isometries of V . In particular, we may associate the following reflection across v isometry to
every anisotropic vector v ∈ V :

ρv : V −→ V

x 7−→ x− 2B(x, v)

B(v, v)
v.

It is clear that ρv is a linear transformation. Also observe that if x ∈ span{v}⊥, then ρv(x) = x, so
ρv restricts to the identity transformation on span{v}⊥. Meanwhile,

ρv(v) = v − 2B(v, v)

B(v, v)
v = v − 2v = −v.

It follows that ρv is an involution which fixes span{v}⊥ pointwise and reflects v across span{v}⊥
to −v.

While the above analysis shows that ρv is a linear isomorphism, we need to also prove that ρv
is an isometry, whence ρv ∈ O(V ). We may compute

B(ρv(x), ρv(y)) = B

(
x− 2B(x, v)

B(v, v)
v, y − 2B(y, v)

B(v, v)
v

)
= B(x, y) +

4B(x, v)B(y, v)

B(v, v)2
B(v, v)− 4B(x, v)B(y, v)

B(v, v)

= B(x, y),
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so we indeed have ρv ∈ O(V ).
Finally, we note that ρv has determinant −1. This is easy to see if we choose a basis for V

compatible with the decomposition

V = span{v} ⊥ span{v}⊥

and use the above observations.

Remark 8.5. It is actually the case that reflections through anisotropic vectors generate the group
O(V ). We will not use this result in the sequel and thus do not go through the proof here. The
reader may easily check that 〈ρv | v ∈ V anisotropic〉 is normal in O(V ); it is more difficult to prove
that this subgroup is all of O(V ).

Remark 8.6. The reader may be familiar with the orthogonal group O(n) of real n × n matrices A
with A> = A−1. This is in fact an orthogonal group in the above sense, namely the one associated
with (Rn, n 〈1〉). In order to see this, let’s examine which matrices A ∈ GLn(k) correspond to
isometries of a regular symmmetric bilinear form (kn, B). It is generally the case that we may
form the B-adjoint operator A† of any linear transformation A of kn. This satisfies the universal
property B(v,Aw) = B(A†v, w) for all v, w ∈ kn. If A is an isometry, then B(v, w) = B(Av,Aw) =
B(A†Av,w) for all v, w. By regularity of B, we get that A†A = I , i.e., A† = A−1. The reader
may check that for the form n 〈1〉, the adjoint operator simply takes the transpose of a matrix, i.e.,
A† = A>, so O(n) = On〈1〉(Rn).

Proposition 8.7. Let (V,B) be a symmetric bilinear form, and let v and w be anisotropic vectors in
V with B(v, v) = B(w,w).6 Then there exists ρ ∈ O(V ) such that ρ(v) = w.

Proof Sketch. Let q = qB . Use the parallelogram law from your homework to deduce that we
cannot have both q(v + w) and q(v − w) equal to 0. Without loss of generality, we may assume
q(v − w) 6= 0.7 We now check (via computation) that the reflection ρv−w takes v to w. Indeed,

ρv−w(v) = v − 2B(v, v − w)

B(v − w, v − w)
· (v − w)

and
B(v − w, v − w) = B(v, v) +B(w,w)− 2B(v, w)

= 2(B(v, v)−B(v, w))

= 2B(v, v − w).

Thus ρv−w(v) = v − (v − w) = w, and we may take ρ = ρv−w. �

Proof of Theorem 8.2. Suppose that f ⊥ f ′ ∼= f ⊥ f ′′. We begin by showing that cancellation holds
(f ′ ∼= f ′′) when f is totally anisotropic and f ′ is regular. In this case, the associated matrices of

f ⊥ f ′ and f ⊥ f ′′ take the forms
(

0 0
0 Af ′

)
and

(
0 0
0 Af ′′

)
, respectively. Since f ⊥ f ′ ∼= f ⊥ f ′′,

there exists an invertible matrix B =

(
a b
c d

)
(where a, b, c, d are block matrices) such that(

0 0
0 Af ′

)
= B>

(
0 0
0 Af ′′

)
B =

(
∗ ∗
∗ d>Af ′′d

)
.

Thus Af ′ = d>Af ′′d. The reader may check that d is nonsingular (because f ′ is regular), so we
conclude that f ′ ∼= f ′′ in this case.

6The draft of these notes from Friday, September 28 omitted the hypothesisB(v, v) = B(w,w) — whoops! In a more
rested or better caffeinated state, we could have realized that isometries preserve B, so the hypothesis is necessary.

7This proceeds by replacing w by −w. If ρ ∈ O(V ) satisfies ρ(v) = −w, then −ρ ∈ O(V ) takes v to w.
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Now consider the case in which f is toally anisotropic and f ′ is not necessarily regular. We may
diagonalize f ′ and f ′′ and assume (without loss of generality) that f ′ has exactly r zeroes in its
diagonalization while f ′′ has r or more zeroes in its diagonalization. Then

f ⊥ r 〈0〉 ⊥ f ′0 ∼= f ⊥ r 〈0〉 ⊥ f ′′0 .
Since f ′0 is regular, the previous paragraph implies that f ′0 ∼= f ′′0 . Taking orthogonal sum with r 〈0〉
implies that f ′ ∼= f ′′.

We may now handle the general case. Let 〈λ1, . . . , λn〉 be a diagonalization of f . Inducing8 on
n, we are reduced to the case n = 1. If λ1 = 0, we are done by the previous case, so assume that
f = 〈λ1〉 and λ1 6= 0. We aim to show that ϕ : 〈λ1〉 ⊥ f ′ ∼= 〈λ1〉 ⊥ f ′′ implies f ′ ∼= f ′′ (where we are
thinking of the equivalence of forms ϕ as a linear isomorphim V → W that preserves symmetric
bilinear forms). Let v ∈ V have first coordinate 1 and other coordinates 0, and similarly define
w ∈ W . Then B(v, v) = B′(w,w) = λ1 6= 0. Let ρ ∈ O(V ) denote the isometry of V taking v to
ϕ−1(w) (guaranteed to exist by Proposition 8.7). Then ϕ ◦ ρ : V → V ′ is an isometry taking v to w.
Hence the restriction of ϕ ◦ ρ to span{v}⊥ corresponds to an equivalence f ′ ∼= f ′′, as desired. �

9. CHAIN EQUIVALENCE

We begin with a simple criterion for the equivalence of binary forms.

Proposition 9.1. Let f = 〈a, b〉 and let g = 〈c, d〉 be regular binary forms. Then f ∼= g if and only if
det f = det g and D(f) ∩D(g) 6= ∅.

Proof. The forwards implication is clear. For the converse, assume det f = det g ∈ k×/k� and
λ ∈ D(f) ∩ D(g). By the First Representation Criterion (Corollary 7.10), we have f ∼= 〈λ, λ′〉
for some λ′ ∈ k×. The determinant condition implies that abk� = λλ′k�, whence f ∼= 〈λ, abλ〉.
Similarly, g ∼= 〈λ, cdλ〉. Since abk� = cdk�, we get that f ∼= g. �

It turns out that equivalence of forms is the same thing as iterative equivalence of binary sub-
forms, a notion we make precise in the following definition.

Definition 9.2. Let f = 〈λ1, . . . , λn〉 and g = 〈µ1, . . . , µn〉 for λi, µi ∈ k. We call f and g simply
equivalent if there are indices i and j such that 〈λi, λj〉 ∼= 〈µi, µj〉 and λk = µk for k 6= i, j. (We
make the convetion that when i = j we interpret 〈λi, λj〉 to be just 〈λi〉.)

Two diagonal forms f and g are chain equivalent if there exists a sequence of diagonal forms
f = f0, f1, . . . , fm = g with each fi simply equivalent to fi+1, 0 ≤ i ≤ m− 1. In this case, we write
f ≈ g.

The reader should take care to note that simple equivalence is not an equivalence relation; rather,
it generates the equivalence relation of chain equivalence. By Proposition 9.1, we know that f ≈ g
implies that f ∼= g. The converse is true as well:

Theorem 9.3. If f = 〈λ1, . . . , λn〉 and g = 〈µ1, . . . , µn〉 are arbitrary diagonal forms of the same dimen-
sion, then f ∼= g implies that f ≈ g.

Proof. We first reduce the problem to regular forms. Given a diagonal form f = 〈λ1, . . . , λn〉 and
σ a permutation of {1, . . . , n}, we define fσ =

〈
λσ(1), . . . , λσ(n)

〉
, which gives a right action of

the permutation group Σn on diagonal forms. Since Σn is generated by transpositions, we know
that f ≈ fσ. We may thus arrange for all of the 0’s in our diagonal forms to come first. By Witt
deccomposition and cancellation, we may assume f and g are regular.

8Mel Hochster (a preeminent commutative algebraist based at the University of Michigan) insists that the word
“induct” is a back-formation and that when we perform induction, we are inducing, not inducting. The author is too
enamored with this argument to disagree.
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We now proceed by induction on the dimension n. If n = 1 or 2, then there is nothing to prove.
Fix n ≥ 3. By the well-ordering principle,9 we may choose a diagonal form f ′ = 〈ζ1, . . . , ζn〉which
is chain-equivalent to f and such that 〈ζ1, . . . , ζp〉 represents µ1, and p is as small as possible.

We claim that p = 1. Suppose for contradiction that p > 1 and write µ1 = ζ1τ
2
1 +· · ·+ζpτ2

p . Since p
is minimal, δ = ζ1τ

2
1 + ζ2τ

2
2 6= 0. By Proposition 9.1, 〈ζ1, ζ2〉 ∼= 〈δ, ζ1ζ2δ〉. Thus f is chain equivalent

to f ′ which is chain equivalent to 〈δ, ζ1ζ2δ, ζ3, . . . , ζp, . . . , ζn〉. Permuting terms, we learn that

f ≈ 〈δ, ζ3, . . . , ζp, . . . , ζn, ζ1ζ2δ〉 .
Since µ1 = δ + ζ3τ

2
3 + . . .+ ζpτ

2
p is represented by 〈δ, ζ3, . . . , ζp〉, we have reached a contradiction.

Since p = 1, we know that 〈ζ1〉 ∼= 〈µ1〉, whence f ≈ 〈µ1, ζ2, . . . , ζn〉 ∼= 〈µ1, . . . , µn〉. By cancella-
tion,

〈ζ2, . . . , ζn〉 ∼= 〈µ2, . . . , µn〉 .
By the induction hypothesis, these forms are also chain equivalent. We conclude that

f ≈ 〈µ1, ζ2, . . . , ζn〉 ≈ 〈µ1, µ2, . . . , µn〉 = g,

as desired. �

10. TENSOR PRODUCT OF VECTOR SPACES AND QUADRATIC FORMS

Thus far, we have frequently used orthogonal sum, ⊥, on quadratic and symmetric bilinear
forms. This “addition operation” actually distributes over a “multiplication” given by the tensor
(or Kronecker) product of forms. In order to develop this notion, we begin by investigating tensor
products of vector spaces.

10.1. Tensor products in linear algebra. Given k-vector spaces V and W , we may form their
tensor product V ⊗W = V ⊗k W . The universal property of V ⊗W is embedded in the following
proposition, and a construction of V ⊗W is contained within its proof.

Proposition 10.1. For every pair of k-vector spaces V and W , there is a k-vector space V ⊗ W
admitting a bilinear map V ×W → V ⊗W and such that every k-bilinear map V ×W → U factors
uniquely as

V ×W U

V ⊗W
where V ⊗W → U is a linear transformation.

Proof. Let I be the set underlying V ×W and define T̃ to be the k-vector space with basis I , i.e.,
T̃ = k⊕I .10 For each i = (v, w) ∈ I , we will also let (v, w) denote the image of i in T̃ . (This element
of the direct sum has entry 1 in the i-th coordinate and 0 in all other coordinates.) Define R ≤ T̃
to be the subspace spanned by vectors of the form

(i) (v1 + v2, w)− (v1, w)− (v2, w) for vi ∈ V , w ∈W ,
(ii) (v, w1 + w2)− (v, w1)− (v, w2) for v ∈ V , wi ∈W ,

(iii) (λv,w)− λ(v, w) for λ ∈ k, v ∈ V , w ∈W ,
(iv) (v, λw)− λ(v, w) for λ ∈ k, v ∈ V , w ∈W ,

9Recall that a set is well-ordered if it is totally ordered and every nonempty subset has a least element under the
ordering. The well-ordering principle (or theorem) says that every set has a well-ordering; famously, it is equivalent to
the axiom of choice. The author is unaware of a constructive proof of this theorem, but one would be welcome.

10Note that in typical cases, I is infinite, so we need to be careful here with the distinction between direct sum and
product.
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and then define
V ⊗W = T̃ /R.

We now verify that V ⊗ W satisfies the universal property. To give a linear transformation
B̃ : T̃ → U is equivalent to giving a funciton B : V ×W → U (by the universal property of direct
sums). Furthermore, this map factors through V ⊗W if and only if it sends each element of R to
0. We may check this property on the spanning vectors of R. But these are exactly the conditions
for bilinearity of the map B, so we are done. The reader may check that the universal properties
invoked also give uniqueness of the map. �

Remark 10.2. For (v, w) ∈ V ×W , let v⊗w denote the corresponding vector in V ⊗W . We call such
an element of V ⊗W a simple tensor. The reader should beware that generic elements of V ⊗W
are linear combinations of simple tensors, not just simple tensors.

Remark 10.3. For n ∈ N, we will let V ⊗n denote the n-fold tensor product of V with itself; if n = 0,
we make the convention that V ⊗0 = k.

For finite-dimensional vector spaces, we can be a fair bit more concrete and write down a basis
for V ⊗W in terms of bases for V and W .

Proposition 10.4. Suppose e1, . . . , en and f1, . . . , fm are bases of V and W , respectively. Then

{ei ⊗ fj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis of V ⊗W . In particular, dimV ⊗W = dimV · dimW .

Proof. Given v =
∑
λiei and w =

∑
µjfj , bilinearity of V ×W → V ⊗W implies that

v ⊗ w =
∑
i,j

λiµjei ⊗ fj .

Since simple tensors span V ⊗ W , we now know that {ei ⊗ fj} spans V ⊗ W . In particular,
dimV ⊗W ≤ nm.

To achieve the opposite inequality, we will temporarily denote the standard basis of knm by
g1, . . . , gnm. The reader may check that the assignment

V ×W −→ knm(∑
i

λiei,
∑
j

µjfj

)
7−→

∑
i,j

λiµjg(i−1)m+j

is a bilinear map. The induced map V ⊗W → knm sends ei ⊗ fj to g(i−1)m+j . Since

{(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} −→ {1, . . . , nm}
(i, j) 7−→ (i− 1)m+ j

is a bijection, the map V ⊗W → knm is surjective, implying that dimV ⊗W ≥ nm as well. We
conclude that dimV ⊗W = nm and that {ei ⊗ fj} is a basis. �

In your homework, you will verify the following crucial properties of tensor products.

Proposition 10.5 (Hom-tensor duality). For all k-vectors spaces V and W , the map

Hom(V ⊗W,U) −→ Hom(V,Hom(W,U))

f 7−→ (v 7→ (w 7→ f(v ⊗ w)))

is an isomorphism.
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Proposition 10.6. For k-vector spaces V and W where V is finite-dimensional, the map

V ∗ ⊗W −→ Hom(V,W )

f ⊗ w 7−→ (v 7→ f(v)w)

is an isomorphism.

Proposition 10.7. For finite-dimensional k-vector spaces V and W , the map

V ∗ ⊗W ∗ −→ (V ⊗W )∗

f ⊗ g 7−→ (v ⊗ w 7→ f(v)g(w))

is an isomorphism.

10.2. Tensor products of quadratic forms. Suppose that (V,B) is a symmetric bilinear form. Then
B is a bilinear map V × V → k and thus induces a unique linear transformation V ⊗ V → k
compatible with the canonical map V × V → V ⊗ V . By Proposition 10.5, such a map is “the
same” as a linear transformation V → V ∗. Abusing notation, we will also refer to V → V ∗ as B.

Now suppose that (V,B) and (W,B′) are symmetric bilinear forms. We may then form a linear
transformation

V ⊗W → V ∗ ⊗W ∗ ∼= (V ⊗W )∗

by taking the taking the tensor product of B : V → V ∗ and B′ : W → W ∗ composed with the
isomorphism provided by Proposition 10.7. Further abusing notation, we will refer to this linear
transformation (and its associated symmetric bilinear form) asB⊗B′. This makes (V ⊗W,B⊗B′)
a symmetric bilinear form called the tensor or Kronecker product of (V,B) and (W,B′).

In the following discussion, we make this construction explicit in all corners of the quadratic
square (�). First note that on simple tensors, we have

(B ⊗B′)(v1 ⊗ w1, v2 ⊗ w2) = B(v1, v2)B′(w1, w2),

and this rule may be extended by bilinearity to all elements of (V ⊗W )× (V ⊗W ).
If q = qB and q′ = qB′ , then the quadratic map q ⊗ q′ = qB⊗B′ satisfies

(q ⊗ q′)(v ⊗ w) = (B ⊗B′)(v ⊗ w, v ⊗ w)

= B(v, v)B′(w,w)

= q(v)q′(w).

Now suppose that V has ordered basis v1, . . . , vm and W has ordered basis w1, . . . , wn. Let
λij = B(vi, vj) and µk` = B′(wk, w`), so that AB = (λij) and AB′ = (µk`). Endow V ⊗W with the
ordered basis

v1 ⊗ w1, . . . , v1 ⊗ wn, v2 ⊗ w1, . . . , v2 ⊗ wn, . . . , vn ⊗ w1, . . . , vn ⊗ wm.

Then AB⊗B′ is the block matrix
λ11AB′ λ12AB′ · · · λ1mAB′
λ21AB′ λ22AB′ · · · λ2mAB′

...
...

. . .
...

λm1AB′ λm2AB′ · · · λmmAB′

 ,

frequently referred to as the Kronecker product of AB and AB′ . In particular, for diagonal forms
q = 〈λ1, . . . , λm〉 and q′ = 〈µ1, . . . , µn〉we have

q ⊗ q′ ∼= 〈λ1µ1, . . . , λ1µn, . . . , λmµ1, . . . , λmµn〉 .
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To determine the tensor product of two quadratic forms, one takes the Kronecker product of their
symmetric matrices then turns that back into a quadratic form; the general formula is unillumi-
nating.

Example 10.8. Consider the quadratic forms f = x2 + 4xy + 3y2 and g = 2x2 + 16xy + y2 which
have symmetric matrices (

1 2
2 3

)
and

(
2 8
8 1

)
.

The Kronecker product of these matrices is
2 8 4 16
8 1 16 2
4 16 6 24
16 2 24 3

 .

It follows that

f ⊗ g = 2x2 + 16xy + 8xz + 32xw + y2 + 32yz + 4yw + 6z2 + 48zw + 3w2.

Proposition 10.9. Up to equivalence, the tensor product of quadratic forms satisfies the commu-
tative and associative laws, and distributes over orthogonal sum:
(a) q ⊗ q′ ∼= q′ ⊗ q,
(b) q ⊗ (q′ ⊗ q′′) ∼= (q ⊗ q′)⊗ q′′,
(c) q ⊗ (q′ ⊥ q′′) ∼= (q ⊗ q′) ⊥ (q ⊗ q′′).

Proof. These results are immediate, especially if one works with diagonal forms. �

The following easy lemma will have significant ramifications in our subsequent studies. Recall
that for n ∈ N and a form q, we write nq for the n-fold orthogonal sum of q with itself.

Lemma 10.10. If q is a regular quadratic form and h = 〈1,−1〉, then

q ⊗ h ∼= (dim q)h.

Proof. Without loss of generality, q = 〈λ1, . . . , λn〉 for some λi ∈ k×. By distribution of ⊗ over ⊥,
we get

q ⊗ h ∼= 〈λ1,−λ1〉 ⊥ · · · ⊥ 〈λn,−λn〉 .
By a homework problem, each summand is equivalent to h, giving the desired equivalence. �

This is remarkable! Tensor multiplication with the hyperbolic plane is insensitive to everything
except the dimension of the form being multiplied.

11. GROUP COMPLETION

The operations ⊥ and ⊗ make the set of isometry classes of regular quadratic forms look an
awful lot like a commutative ring. Indeed, we can associatively and commutatively add and
multiply, the 0 form is a unit for ⊥, 〈1〉 is a unit for ⊗, and ⊗ distributes over ⊥ (Proposition 10.9).
But we are missing a crucial operation: subtraction. This type of structure is actually common
in mathematics; it is called a (commutative) semi-ring. Underlying every semi-ring is an Abelian
monoid, a set with an associative, commutative addition operation and 0 element. Our present
goal is to make a natural construction which turns every Abelian monoid into an Abelian group;
when applied to a semi-ring, the multiplication will come along for the ride and we will get a ring.
In the next section we will apply this construction to quadratic forms.
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Definition 11.1. A semigroup (M, •) is a set M together with a binary operation •which is associa-
tive. If there exists e ∈M that acts as an identity element (e •m = m = m • e for all m ∈M ), then
we call M a monoid. If • is commutative (m • n = n •m for all m,n ∈ M ), we call M an Abelian
monoid. In a generic monoid, we will typically drop • from our notation and write mn = m • n; in
an Abelian monoid, we will typically write + for •.
Example 11.2. You have probably encountered a great many semigroups and monoids in your
mathematical career already.
(1) (Z>0,+) is an Abelian semigroup.
(2) (N,+) is an Abelian monoid.
(3) (Z>0, ·) is an Abelian monoid.
(4) If S is a totally ordered set and a • b = min{a, b}, then (S, •) is an Abelian semigroup. If

s = supS exists, then (S, •) is an Abelian monoid with identity element s.
(5) Given a set S, (2S ,∩) and (2S ,∪) are Abelian monoids. (Here 2S denotes the set of subsets of

S.)
(6) Every group has an underlying monoid which is Abelian whenever the monoid is. Addition-

ally, every subset of a group which is closed under the group operation is a semigroup; if the
subset contains the identity element, it is also a monoid.

(7) Given a set S, (SS , ◦) is a monoid called the transformation monoid of S. In any category, the
endomorphisms of a given object form a monoid under composition.

(8) Given a (unital) ring (R,+, ·), (R, ·) is a monoid.
(9) The set of all finite strings over a fixed alphabet Σ with the concatenation operation is the free

monoid over Σ. (Here we are including the empty string, which serves as the identity. If the
empty string is excluded, this is the free semigroup over Σ.)

(10) Given a field k, write M(k) for the set of isometry classes of regular quadratic forms over k.
Then (M(k),⊥) is an Abelian monoid with identity 0 and (M(k),⊗) is an Abelian monoid with
identity 〈1〉.

Definition 11.3. Given monoids M and N , a monoid homomorphism f : M → N is a function be-
tween underlying sets satisfying f(e) = e and f(mn) = f(m)f(n) for all m,n ∈M .

Notably, the condition f(e) = e does not come along for free in this setting. The reader may
check that in a cancellative monoid (see the Definition 11.9), this condition follows from preserva-
tion of the monoid operation.

Given a monoid M , we would like to form the “smallest” group admitting a homomorphism
from M . Similar to our handling of the tensor product of vector spaces, the following proposition
states the universal property of such an object, and the proof contains a construction/definition.

Proposition 11.4. Given a monoid M , there exists a group Mgp (called the group completion or
universal enveloping group of M ) and a homomorphism M → Mgp such that if G is a group and
M → G is a homomorphism, there is a unique homomorphism Mgp → G such that the diagram

M G

Mgp

commutes.

Proof Sketch. Let M = {m | m ∈M} and set

Mgp = 〈M | e = e,mn = m · n for all m,n ∈M〉 .
(This is standard notation for presenting a group via generators and relations.) The mapM →Mgp

is given by m 7→ m. Given a group G and homomorphism f : M → G, the function m 7→ f(m)
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is well-defined and a homomorphism. Moreover, in order for the diagram to commute, the map
Mgp → G must take these values. �

Remark 11.5. The reader should compare this construction and its universal property with Abelian-
ization, G 7→ GAb.

Remark 11.6. Given a monoid homomorphism f : M → N , composition with N → Ngp results in
a homomorphism M → Ngp. By Proposition 11.4, we get a unique compatible homomorphism
fgp : Mgp → Ngp. The reader may check that idgp

M = idMgp and (f ◦ g)gp = fgp ◦ ggp, so ( )gp is a
functor from monoids to groups. In fact, this functor is left adjoint to the “forgetful” functor that
takes a group to its underlying monoid.

Word problems in groups make the group completion of an arbitrary monoid unwieldy to work
with in general. In the case of Abelian monoids, we can be much more concrete.

Proposition 11.7. If M is an Abelian monoid, then the following statements are true:
(a) Every element of Mgp can be expressed as m− n for some m,n ∈M .
(b) If m,n ∈M , then m = n ∈Mgp if and only if m+ ` = n+ ` for some ` ∈M .
(c) The monoid map M ×M →Mgp taking (m,n) 7→ m− n is surjective.
(d) The set underlying the group completionMgp is the set-theoretic quotient ofM by the equiva-

lence relation generated by (m,n) ∼ (m′, n′) whenever there exists ` ∈M such thatm+n′+` =
m′ + n+ `.

Proof. First observe that since M is Abelian, we can rewrite

Mgp = ZM/R

where ZM = Z⊕M is the free Abelian group on M and R is the subgroup (necessarily normal)
generated by m+ n−m− n. In a free Abelian group (such as ZM ), every element is a difference
of sums of (potentially repeated) generators. Since m1 + · · · + mk = m1 + · · ·+mk in Mgp, we
can “group positive and negative terms” to achieve the description given in (a). Part (c) follows
immediately.

For (b), suppose m− n = 0 in Mgp. This means that m− n is an element of R, and hence

m− n =

(∑
ai + bi − ai − bi

)
−
(∑

cj + dj − cj − dj
)

in ZM for some ai, bi, cj , dj ∈ M . (Here we are using that elements of R can be written as a
difference of a sum of generators.) By doing some arithmetic in ZM , we get that

m+

(∑
ai + bi

)
+

(∑
cj + dj

)
= n+

(∑
ai + bi

)
+

(∑
cj + dj

)
.

In a free Abelian group, two sums of generators are equal if and only if they have the same number
of terms, and those terms differ by a permutation. Hence the terms on the left and right of the
above display differ only by a permutation. It follows that we may “remove the underlines” and
translate the above identity into one that holds in M :

m+

(∑
ai + bi

)
+

(∑
cj + dj

)
= n+

(∑
ai + bi

)
+

(∑
cj + dj

)
.

This proves (b), and (d) follows immediately from (a) and (b). �

Remark 11.8. Given the above proposition, some authors choose to define Mgp as the quotient of
M×M described in part (d). In fact, you may have seen exactly this construction in Math 112 when
building (Z,+) from (N,+). This is also closely related to the construction of fields of fractions of
integral domains and, more generally, localizations of commutative rings at multiplicative subsets.
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For special classes of Abelian monoids, group completion is even better behaved.

Definition 11.9. A monoid M is cancellative (or has the cancellation property) if for all m,n, ` ∈ M ,
the equality mn = m` implies that n = `.

Corollary 11.10. For an Abelian monoid M , the natural map M → Mgp is injective if and only if
M is cancellative.

Proof. First suppose that M is a cancellative Abelian monoid and suppose that m = n ∈ Mgp. By
Proposition 11.7(b), we know there is some ` ∈M such that m+ ` = n+ `. Since M is cancellative,
m = n, whence M →Mgp is injective.

Now suppose that M is Abelian and M → Mgp is injective. Again by Proposition 11.7(b), we
know that m = n ∈Mgp if and only if m+ ` = n+ ` for some ` ∈M . But injectivity of M →Mgp

says that m = n if and only if m = n. Enchaining equivalences, we learn that m+ ` = n+ ` if and
only if m = n, which is the cancellation property. �

We now study the situation in which an Abelian monoid (M,+) also supports a “multiplica-
tion” that distributes over +.

Definition 11.11. A (unital) semiring (M,+, ·) consists of an Abelian monoid (M,+) and a monoid
(M, ·) such that m · (n+ `) = (m · n) + (m · `) and (n+ `) ·m = (n ·m) + (` ·m) for all m,n, ` ∈M .

Remark 11.12. Some authors refer to semirings as rigs because they are rings without negatives.
While exceptionally cute, this author finds it too difficult to distinguish rig from ring when reading
quickly.

Example 11.13. (a) The natural numbers with standard addition and multiplication form a semir-
ing.

(b) For a fixed group G, isomorphism classes of finite G-sets with disjoint union and Cartesian
product form a semiring.

(c) The set of isometry classes M(k) of regular quadratic forms over k with orthogonal sum and
tensor product form a semiring.

Proposition 11.14. Let (M,+, ·) be a semiring and letMgp denote the group completion of (M,+).
Then · extends to Mgp and makes Mgp a ring.

Proof. Without loss of generality, we may replace Mgp with the quotient (M ×M)/∼ of Proposi-
tion 11.7(d). Inspired by the formula (m− n)(m′ − n′) = (mm′ + nn′)− (mn′ + nm′) which holds
in rings, we define (m,n) · (m′, n′) to be (mm′ + nn′,mn′ + nm′). It is now rote to check that this
makes Mgp a ring. �

Remark 11.15. More is true. With the induced ring structure, ( )gp is a functor from semirings
to rings which is left adjoint to the forgetful functor. In particular, if M is a semiring, R is a
ring, and f : M → R respects addition, multiplication, and units, then there is a unique ring
homomorphism fgp : Mgp → R such that

M R

Mgp

commutes.

Example 11.16. (a) (N,+, ·)gp = (Z,+, ·).
(b) For a groupG, let Iso(GFin) denote isomorphism classes of finiteG-sets. Then (Iso(GFin),q,×)gp

is called the Burnside ring of G, and is typically denoted A(G) (or B(G), or Ω(G)).
(c) In the next section, we will thoroughly explore GW(k) = (M(k),⊥,⊗)gp, the Grothendieck-Witt

ring of k.
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12. THE WITT AND GROTHENDIECK-WITT RINGS

Definition 12.1. The Grothendieck-Witt ring of k, denoted GW(k), is the group completion of M(k),
the semiring of isometry classes of regular quadratic forms over k with operations ⊥ and ⊗. We
write + and · for ⊥ and ⊗ in GW(k).

By Theorem 8.2, M(k) is a cancellative monoid, and thus (by Corollary 11.10) the natural map
M(k) → GW(k) is an injective homomorphism. In fact, we will make the usual abuse of notation
and consider M(k) to be a subset of GW(k). Additionally, rather than referring to the isometry
class of q as q or [q] and belaboring the distinction between q ∼= q′ and q = q′, we will simply write
q = q′ in GW(k), as long as it is clear from context that we are working in the Grothendieck-Witt
ring.

By Proposition 11.7, we have that every element of GW(k) may be written as q − q′ for q, q′ ∈
M(k). If q, q′ ∈M(k) and q = q′ in GW(k), then Corollary 11.10 implies that q = q′ inM(k) as well,
further justifying the abuses of the previous paragraph.

We have already seen that dimension gives a homomorphism dim: M(k)→ Z. As such, we get
a dimension homomorphism dim: GW(k) → Z, and we may compute it on “formal differences”
as dim(q − q′) = dim q − dim q′.

Definition 12.2. The fundamental ideal of GW(k) is

GI(k) = ker(dim: GW(k)→ Z).

Since the dimension homomorphism is manifestly surjective, we get the isomorphism

GW(k)/GI(k) ∼= Z
for all fields k.

Proposition 12.3. The fundamental ideal is additively generated (as a subgroup) by the expres-
sions 〈λ〉 − 〈1〉, λ ∈ k×.

Proof. Elements of the form 〈λ〉−〈1〉 are clearly in GI(k), giving us one inclusion. If z ∈ GI(k), then
z = q − q′ for q, q′ ∈ M(k) of the same dimension. Diagonalizing, we may write q = 〈λ1, . . . , λn〉
and q′ = 〈µ1, . . . , µn〉. Then

z =
∑

(〈λi〉 − 〈µi〉) =

(∑
〈λi〉 − 〈1〉

)
−
(∑

〈µi〉 − 〈1〉
)
.

This shows that z is in the subgroup generated by “virtual forms” of the form 〈λ〉 − 〈1〉, proving
the opposite inclusion. �

Now consider the ideal (h) = hGW(k) generated by the hyperbolic form h = 〈1,−1〉. Recall
that Lemma 10.10 tells us that hq = dim(q)h. As such,

(h) = Zh,
the set of integer multiples of h. To remind us that this ideal has such a simple form, we will
typically write it as Zh rather than (h).

Definition 12.4. The Witt ring of k is the quotient ring

W(k) = GW(k)/Zh.

Somewhat surprisingly, the Witt ring actually predates the Grothendieck-Witt ring, having been
introduced (by another name) in Witt’s 1937 paper. The following proposition exhibits how this
was possible.

Proposition 12.5. (a) The elements of W(k) are in bijective correspondence with isometry classes
of anisotropic forms over k.
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(b) Two regular forms q and q′ represent the same class in W(k) if and only if their anisotropic
parts (in the sense of the Witt Decomposition Theorem 8.1) are isometric.

(c) If dim q = dim q′, then q and q′ represent the same class in W(k) if and only if q ∼= q′.

Proof. First note that (a) implies (b) and (c). Indeed, (b) is immediate given that qh + qa ≡ qa
(mod Zh). For (c), suppose dim q = dim q′ and q = q′ in W(k). By (b), qa ≡ q′a, and the dimension
condition guarantees that qh ∼= q′h as well, whence q ∼= q′. The other direction of (c) is trivial.

To prove (a), first note that h = 0 in W(k) implies that 〈−1〉 = −〈1〉 in W(k) and, more generally,
〈−λ〉 = −〈λ〉 in W(k). It follows that every element of W(k) is represented by a (non-virtual)
quadratic form. By Witt decomposition and the fact that hyperbolic spaces are trivial in W(k),
we know that q = qa in W(k), where qa is the anisotropic part of q. Thus every element of W(k)
is represented by an anisotropic form. It remains to show that if q and q′ are anisotropic and
q = q′ ∈ W(k), then q ∼= q′. We have q = q′ + mh ∈ GW(k) for some integer m. Swapping q and
q′ if necessary, we may assume that m ≥ 0. Thus q ∼= q′ ⊥ mh. Since q is anisotropic, we may
conclude that m = 0, so q ∼= q′ as desired. �

Now consider the image of GI(k) under the quotient homomorphism GW(k) → W(k). We
denote this ideal I(k), and call it the fundamental ideal of W(k). We will interpret this ideal through
the lens of the following commutative diagram

(ℵ)

0 0

0 Zh 2Z 0

0 GI(k) GW(k) Z 0

0 I(k) W(k) Z/2Z 0

0 0 0

∼=

∼=

dim0

in which the rows and columns are exact.11 There are two observations hiding here. First, when
restricted to GI(k), the quotient homomorphism is an isomorphism onto GI(k) ∼= I(k). This follows
because GI(k) ∩ Zh = 0. Second, an anisotropic form q is in I(k) if and only if its dimension is 0;
the map W(k)→ Z/2Z takes q + Zh 7→ dim q + 2Z. We state and prove this second observation in
the following proposition.

Proposition 12.6. A regular quadratic form q represents an element of I(k) ⊆ W(k) if and only if
dim q is even.

Proof. We begin with the right-to-left implication. It suffices to consider a binary quadratic form
q = 〈λ, µ〉. Note that 〈λ〉−〈−µ〉 7→ 〈λ, µ〉 under the quotient map GW(k)→W(k). By the definition
of I(k), we conclude that q ∈ I(k).

For the left-to-right implication, suppose that q is regular and in I(k). By definition, q = q1−q2 +
mh ∈ GW(k) wherem ∈ Z and dim q1 = dim q2. It follows that dim q = dim q1−dim q2 +2m = 2m,
as desired. �

11A sequence A
f−→ B

g−→ C of homomorphisms is exact at B when ker g = im f . We are claiming that every
composable pair of horizontal or vertical maps is exact at its shared term. Note that exactness of 0→ A→ B → C → 0
(a short exact sequence) implies that C ∼= B/A, where A is identified with its isomorphic image in B.
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13. THE I-ADIC FILTRATION OF THE WITT RING AND THE “DIMTERMINANT” HOMOMORPHISM

Given a commutative ring R and an ideal J ⊆ R, we may consider the J-adic filtration of R,

R ⊇ J ⊇ J2 ⊇ J3 ⊇ J4 ⊇ · · · ,

where Jk is the k-fold product of J with itself. Such a filtration has filtration quotients

R/J, J/J2, J2/J3, J3/J4, . . . .

Loosely speaking, one might try to understand properties of R by first understanding all the fil-
tration quotients and then trying to glue these pieces together.

In the cases of the Grothendieck-Witt and Witt rings, we will concern ourselves with the GI(k)-
adic and I(k)-adic filtrations. Since GI(k) ∼= I(k), the associated filtration quotients will only differ
at the first stage. This stage is easy for us to identify via (ℵ): GW(k)/GI(k) ∼= Z, and W(k)/ I(k) ∼=
Z/2Z.

We now consider the second filtration quotient, GI(k)/GI(k)2 ∼= I(k)/ I(k)2. In order to deter-
mine this quotient’s structure, we will achieve the more ambitious goal of identifying W(k)/ I(k)2

(again with k implicit).
Recall that there is a monoid homomorphism det : M(k)→ k×/k� which takes the square class

of the determinant of a symmetric matrix representing a regular quadratic form. This extends to a
group homomorphism det : GW(k)→ k×/k� via the formula

det(q − q′) = det(q)/det(q′)

for q′ 6= 0. Since deth = −1 · k�, and this class is nontrivial in fields lacking a square root of −1,
the map det does not extend to W(k). We remedy this via a clever construction.

If q is a regular quadratic form with dim q = n, define the signed determinant of q by

det
±
q = (−1)n(n−1)/2 det q ∈ k×/k�.

This map satisfies det± h = k�, but it is no longer a homomorphism: det±(q ⊥ q′) 6= det±(q) ·
det±(q′) in general. We need to change the codomain and add some information to det± to get a
homomorphism out of W(k).

Define Q(k) to be the set Z/2Z× k×/k� and equip it with the binary operation

(m+ 2Z, λk�) · (n+ 2Z, µk�) = ((m+ n) + 2Z, (−1)mnλµk�).

The reader may check that this is a commutative and associative product with identity element
(2Z, k�). The inverse of (n+ 2Z, λk�) with respect to this operation is (n+ 2Z, (−1)nλk�) since

(n+ 2Z, λk�) · (n+ 2Z, (−1)nλk�) = (2n+ 2Z, (−1)n
2
(−1)nλ2k�) = (2Z, k�).

Thus (Q(k), ·) is a group. Furthermore, the map k×/k� → Q(k) given by λk� 7→ (2Z, λk�) is
an injective homomorphism which identifies k×/k� as an index two subgroup of Q(k). In other
words, we get a short exact sequence of Abelian groups

1→ k×/k� → Q(k)→ Z/2Z→ 0

which is an extension of k×/k� by Z/2Z. This extension is split (i.e., Q(k) is the product of k×/k�

and Z/2Z) if and only if −1 ∈ k�.

Proposition 13.1. The assignment

(dim0, det±) : M(k) −→ Q(k)

q 7−→ (dim0(q), det±q)
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(which we will glibly refer to as the dimterminant) is a surjective monoid homomorphism. Its
extension to GW(k) → Q(k) factors through W(k) and induces an isomorphism W(k)/ I(k)2 ∼=
Q(k).

Proof. We first check that the map is a monoid homomorphism. Suppose q and q′ are (isometry
classes of) regular quadratic forms with dim q = n and dim q′ = n′. Then

(dim0,det±)(q) · (dim0, det±)(q′) = (n+ 2Z, (−1)n(n−1)/2 det(q)) · (n′, (−1)n
′(n′−1)/2 det(q′))

= ((n+ n′) + 2Z, (−1)nn
′
(−1)(n(n−1)+n′(n′−1))/2 det(q) det(q′))

= ((n+ n′) + 2Z, (−1)(n+n′)(n+n′−1)/2 det(q ⊥ q′))
= (dim0,det±)(q ⊥ q′),

as desired. Additionally, we have (dim0,det±)(〈λ〉) = (1 + 2Z, λk�) and (dim0, det±)(〈1,−λ〉) =
(2Z, λk�). It follows that (dim0, det±) is surjective.

By the universal property of group completion, we get a unique surjective group homomor-
phism (dim0,det±) : GW(k)→ Q(k). Moreover,

(dim0, det±)(h) = (2Z, (−1) det(h)) = (2Z, k�),

the identity element of Q(k), so this map factors through W(k) = GW(k)/Zh.
The next step is to check that this map is trivial on I(k)2. We know that I(k) is additively

generated by binary forms 〈1, λ〉, so I(k)2 is additively generated by the four-dimensional forms
〈1, λ〉 ⊗ 〈1, µ〉 = 〈1, λ, µ, λµ〉. We have

(dim0, det±)(〈1, λ, µ, λµ〉) = (2Z, (−1)4λ · µ · λµk�) = (2Z, k�),

so the map factors as a surjective homomorphism f : W(k)/ I(k)2 → Q(k).
Finally, we construct an inverse g : Q(k) → W(k)/ I(k)2 in order to prove that f is an isomor-

phism. This map is given by

g(2Z, λk�) = 〈1,−λ〉+ I(k)2, g(1 + 2Z, λ) = 〈λ〉+ I(k)2.

In a homework problem, you will check that g is a homomorphism. (All that is required is rote
computation.) Clearly f ◦ g = idQ(k), so g splits the surjection f . Since g(1 + 2Z, λk�) = 〈λ〉+ I(k)2,
we learn that g is surjective, whence f and g are inverse isomorphisms. �

We immediately get the following corollary.

Corollary 13.2. If I(k)2 = 0, then W(k) ∼= Q(k) as an Abelian group.

Since f : W(k)/ I(k)2 → Q(k) is injective, we also have the following result.

Corollary 13.3. The ideal I(k)2 consists of classes of even-dimensional forms q for which det(q) =

(−1)n(n−1)/2k�, where n = dim q.

Finally, if we restrict f to I(k)/ I(k)2, then the “dim0-coordinate” always takes the value 2Z. This
implies the following corollary.

Corollary 13.4. The restriction of f : W(k)/ I(k)2 → Q(k) to I(k)/ I(k)2 induces an isomorphism

I(k)/ I(k)2 ∼= k×/k�.

This is our desired determination of the second filtration quotient of the I(k)-adic filtration of
W(k). Later, we will return to this filtration and discuss the Milnor conjecture (proved by Voevod-
sky), which asserts an isomorphism between I(k)n/ I(k)n+1 and kMn (k), the n-th mod 2 Milnor
K-theory group of k.
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14. FIRST COMPUTATIONS OF WITT AND GROTHENDIECK–WITT RINGS

For certain fields we can completely determine the structure of GW(k) and W(k). Here we
expose several of these examples, focusing on quadratically closed fields, the real numbers, and
finite fields.

Definition 14.1. A field k is quadratically closed if every element of k is a square, i.e., k� = k×.

Proposition 14.2. A field k is quadratically closed if and only if dim: GW(k) → Z is an isomor-
phism. In this case, dim0 : W(k) ∼= Z/2Z.

Proof. If k is quadratically closed, then 〈λ〉 ∼= 〈1〉 for all λ ∈ k× = k�, and thus q ∼= (dim q) 〈1〉 for
all regular quadratic forms q. This implies that dim is an isomorphism.

Conversely, if dim is an isomorphism, then 〈λ〉 ∼= 〈1〉 for all λ ∈ k×, which is only possible if
k× = k�. �

To handle k = R, we recall some facts you proved in your homework.

Lemma 14.3. If 〈λ1, . . . , λn〉 ∼= 〈µ1, . . . , µn〉 over R, then there are the same number of positive λi’s
as there are positive µi’s.

Proof. Since R×/R� = {±1}R>0, both forms may be rewritten as r 〈1〉 ⊥ (n − r) 〈−1〉 and s 〈1〉 ⊥
(n−s) 〈−1〉. The Witt Decomposition Theorem 8.1 and Cacellation Theorem 8.2 allows us to group
together and cancel hyperbolic terms. The remaining equivalent anisotropic forms must consist
of the same number of all 1’s or all −1’s. This allows us to conclude that r = s. �

The above lemma guarantees that the following definition is well-posed.

Definition 14.4. The signature of a real quadratic form q is

sgn(q) = n+ − n−
where n+ is the number of positive terms and n− is the number of negative terms in any diago-
nalization of q.

Note that sgn: GW(R) → Z is in fact a ring homomorphism, and since sgn 〈1,−1〉 = 0, it
descends to a homomomorphism (with the same name) sgn: W(R)→ Z.

Proposition 14.5. The signature homomorphism sgn: W(R)→ Z is an isomorphism.

Proof. By Proposition 12.5, the elements of W(R) are in bijective correspondence with isometry
classes of anisotropic forms, which are all of the form n 〈1〉 or n 〈−1〉 over R. It immediately
follows that sgn is an isomorphism. �

We can make a similarly nice statement for the Grothendieck–Witt ring.

Proposition 14.6. Over k = R,
(a) the isometry class of every regular quadratic form is determined by its dimension and signa-

ture, and
(b) GW(k) ∼= Z[h]/(h2 − 2h).

Proof. Part (a) is a direct consequence of Lemma 14.3. For part (b), note that (a) implies that
Lemma 14.3 implies that every element of GW(R) takes the form m+nh for unique integers m,n.
We define a function f : GW(k)→ Z[h]/(h2−2h) by the formula f(m+nh) = m+nh, which is a bi-
jection since the codomain has additive basis {1, h}. By Lemma 10.10, we have h2 = 2h ∈ GW(k),
and this makes it easy to check that f is a homomorphism, and hence an isomorphism. �
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Remark 14.7. Alternately, we may express GW(R) as the integral group ring on C2, Z[C2], by con-
sidering {〈1〉 , 〈−1〉} as a free Z-basis of GW(R). Here, for a group G, Z[G] =

⊕
g∈G Z{g} with

multiplication extended bilinearly from (1g) · (1h) = 1(gh) (with the final product gh occuring in
G). We leave the details of the isomorphisms GW(R) ∼= Z[C2] ∼= Z[x]/(x2 − 1) to the reader.

It is also interesting to note that the above results hold for all Euclidean fields k, i.e., those which
are Pythagorean with [k× : k�] = 2.

We now consider finite fields k = Fq, where q = pn, p > 2 prime.12 Since k× is cyclic of order
q − 1, we have k×/k� = {k�, sk�} for some nonsquare s ∈ k× r k�.

Lemma 14.8. For k = Fq, any class s ∈ k× r k� is a sum of two squares in k×.

Proof. First suppose that −1 ∈ k�. Then 〈1, 1〉 ∼= 〈1,−1〉 = h is universal, so s is a sum of two
squares.

If −1 /∈ k�, consider the sets k� and 1 + k� which are subsets of k of the same cardinality,
(q− 1)/2. These sets are not equal since 1 ∈ k� but 1 /∈ 1 + k�. It follows that some 1 + λ2 is not in
k�. Since 1 + λ2 6= 0 (lest −1 ∈ k�), we know that 1 + λ2 ∈ k× r k�. It follows that

sk� = (1 + λ2)k�,

whence s is also a sum of two squares. �

Lemma 14.8 implies that every regular binary form over Fq is universal.

Proposition 14.9. Over k = Fq, every regular binary form is universal.

Proof. Since 1 and s are the only square classes, there at most three nonequivalent regular binary
forms,

f1 = 〈1, 1〉 , f2 = 〈1, s〉 , and f3 = 〈s, s〉 .
Lemma 14.8 implies that each of these is universal. �

Theorem 14.10. Let k be a field in which every regular binary form is universal (such as Fq). Then
(a) two regular quadratic forms are isometric if and only if they have the same dimension and the same

determinant,
(b) GI(k)2 ∼= I(k)2 = 0 and GI(k) ∼= I(k) ∼= k×/k�, and
(c) W(k) ∼= Q(k), and GW(k) ∼= Z⊕GI(k) with trivial multiplication on GI(k).

Proof. First note that, since any regular binary form 〈λ1, λ2〉 represents 1, we have 〈λ1, λ2〉 ∼=
〈1, λ1λ2〉. It follows by induction that

q = 〈λ1, . . . , λn〉 ∼= 〈1, . . . , 1,det(q)〉 ,

which proves (a).
By Proposition 12.3, GI(k)2 is additively generated by

(〈λ1〉 − 〈1〉)(〈λ2〉 − 〈1〉) = 〈λ1λ2〉+ 〈1〉 − 〈λ1〉 − 〈λ2〉 = 0,

so GI(k)2 = 0. The rest of (b) follows from Corollary 13.4.
The first part of (c) has already been stated in Corollary 13.2. For the second part of (c), note

that
0→ GI(k)→ GW(k)

dim−−→ Z→ 0

12The reader may safely assume q = p in the following discussion if they have not studied general finite fields
previously.
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is a split short exact sequence.13 The ring structure follows since GI(k)2 = 0. �

Corollary 14.11. Let k = Fq. If q ≡ 1 (mod 4), then W(k) is isomorphic to the group ring F2[k×/k�];
if q ≡ 3 (mod 4), then W(k) ∼= Z/4Z. In both cases, GW(k) ∼= Z⊕ Z/2Z with trivial multiplication
on the second summand.

Proof. As a group, we know that W(k) ∼= Q(k) and that Q(k) sits in a short exact sequence,

0→ k×/k� → Q(k)→ Z/2Z→ 0.

When q ≡ 1 (mod 4), this sequence is split by s(n + 2Z) = n 〈1〉, but when q ≡ 3 (mod 4) the
sequence does not split (essentially because h 6∼= 2 〈1〉 in this case). We leave the remaining details
to the reader. �

Remark 14.12. Later, we will see that if k = F (t) with F algebraically closed, then every regular
binary form over k is universal, at which point Theorem 14.10 will once again provide a computa-
tion of W(k) and GW(k). In this case, an F2-basis of k×/k� is given by {(t− λ)k� | λ ∈ F}, so the
Witt and Grothendieck–Witt rings have the same cardinality as F , but we still have precise control
over their structure.

15. PRESENTATIONS OF THE WITT AND GROTHENDIECK–WITT RINGS

Our present aim is to present the Grothendieck–Witt and Witt rings (of a given field k) in terms
of generators and relations in the category of commutative rings. A presentation of a commutative
ring A consists of a set of generators S and relations R ⊆ Z[S] such that A ∼= Z[S]/(R). Here
Z[S] is the free commutative ring on S, and (R) is the ideal in Z[S] generated by R. The following
proposition specifies the universal property of Z[S], and a construction of Z[S] appears in the
proof. A formal definition of a presentation then follows.

Proposition 15.1. Given a set S, there exists a commutative ring Z[S] and function S → Z[S] such
that for any commutative ring A and function f : S → A, there exists a unique ring homomor-
phism f̃ : Z[S]→ A such that

S A

Z[S]

f

f̃

commutes.

Proof. As the notation suggests, we set Z[S] to be the polynomial ring over Z with variables the el-
ements of S. The function S → Z[S] takes s ∈ S to the variable of the same name. Given a function
f : S → A to a commutative ring A, we define f̃ to be the function which evaluates a polynomial
in S at the values given by f . The reader may check that this defines a ring homomorphism, and
it is the only such map that will make the diagram commute. �

Definition 15.2. A presentation of a commutative ring A consists of a set S, a set R ⊆ Z[S],
and a function f : S → A such that the homomorphism f̃ : Z[S] → A induces an isomorphism
Z[S]/(R) ∼= A. In this case, we write A ∼= 〈S | R〉.

Theorem 15.3. Let [k×] = {[λ] | λ ∈ k×} and let R be the set consisting of expressions of one of the
following three forms:

13We have already discussed what it means to be a short exact sequence. The word split means that there is a
homomorphism s : Z → GW(k) such that dim ◦s = idZ. Indeed, we may take s(n) = n 〈1〉. When a short exact
sequence is split, the middle term is automatically the direct sum of the first and last terms. (Warning: Many short exact
sequences are not split, e.g., 0→ Z/2Z→ Z/4Z→ Z/2Z→ 0.)
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(a) [1]− 1,
(b) [λµ]− [λ][µ] for λ, µ ∈ k×,
(c) [λ] + [µ]− [λ+ µ](1 + [λµ]) for λ, µ, λ+ µ ∈ k×.
Then

GW(k) ∼=
〈
[k×] | R

〉
.

Before proving this result, we establish the following prepatory lemma.

Lemma 15.4. For every λ ∈ k×, [λ2] = 1 in 〈[k×] | R〉.

Proof. By relation (c),

[λ] + [λ] = [2λ](1 + [λ2])

in 〈[k×] | R〉. We may also perform the following computation of [λ] + [λ] in 〈[k×] | R〉:

[λ] + [λ] = [λ]([1] + [1]) (by (b) and the distributive law)

= [λ][2](1 + 1) (by (c) and (a))

= [2λ](1 + 1) (by (b)).

It follows that [2λ](1 + [λ2]) = [2λ](1 + 1). By (b), we know that [2λ] is a unit in 〈[k×] | R〉, so
1 + [λ2] = 1 + 1. Subtracting 1 from both sides gives [λ2] = 1, as desired. �

Proof of Theorem 15.3. We take f : [λ] 7→ 〈λ〉 to be the map S → GW(k), which induces a ho-
momorphism Z[[k×]] → GW(k) by Proposition 15.1. Since GW(k) is additively generated by
{〈λ〉 | λ ∈ k×}, we know that f̃ is surjective.

We know that (R) ⊆ ker f̃ because 〈1〉 = 1, 〈λ〉 〈µ〉 = 〈λµ〉, and 〈λ〉+ 〈µ〉 = 〈λ+ µ〉 (1 + 〈λµ〉).14

Thus f̃ factors through 〈[k×] | R〉 to give a surjective ring homomorphism ˜̃
f : 〈[k×] | R〉 → GW(k).

We now produce an inverse to ˜̃
f , GW(k) → 〈[k×] | R〉.15 By the univeral property of group

completion, we can construct a monoid homomorphism ϕ : M(k)→ 〈[k×] | R〉. Given a quadratic
form q equivalent to 〈λ1, . . . , λn〉, we would like to define ϕ(q) = [λ1] + · · · + [λn]. We must
show that this assignment is well-defined. Once we have done so, it follows immediately that
ϕ̃ : GW(k)→ 〈[k×] | R〉 is our desired inverse.

To check well-definition of ϕ amounts to showing that 〈µ1, . . . , µn〉 is another diagonalization
of q, then

∑
[λi] =

∑
[µi] in 〈[k×] | R〉. By Theorem 9.3, we may assume that 〈λ1, . . . , λn〉 is simply

equivalent to 〈µ1, . . . , µn〉. Without loss of generality, further assume that λi = µi for i ≥ 3 and that
〈λ1, λ2〉 ∼= 〈µ1, µ2〉. We must show that [λ1] + [λ2] = [µ1] + [µ2] in 〈[k×] | R〉 whenever 〈λ1, λ2〉 ∼=
〈µ1, µ2〉.

Since 〈λ1, λ2〉 ∼= 〈µ1, µ2〉 there exist x, y ∈ k and z ∈ k× such that µ1 = λ1x
2 + λ2y

2 and
λ1λ2 = µ1µ2z

2. First suppose that x = 0 or y = 0, in which case we may assume that x = 0 without
loss of generality. Then µ1 = λ2y

2, so [µ1] = [λ2y
2] = [λ2] in 〈[k×] | R〉 by (b) and Lemma 15.4. We

also have

[λ1] =

[
µ2 ·

µ1

λ2
· z2

]
= [µ2(yz)2] = [µ2] ∈

〈
[k×] | R

〉
.

Thus [λ1] + [λ2] = [µ1] + [µ2], as desired.

14The final equality follows easily from Proposition 9.1, but you also checked it by producing an explicit equivalence
between 〈λ, µ〉 and 〈λ+ µ, (λ+ µ)λµ〉 on a homework.

15It suffices to exhibit an inverse function. We will construct the map as a group homomorphism, and the reader
may check that it is actually a ring isomorphism.
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Now suppose that x, y 6= 0. Then in 〈[k×] | R〉,

[λ1] + [λ2] = [λ1x
2] + [λ2y

2] (by Lemma 15.4)

= [λ1x
2 + λ2y

2](1 + [λ1λ2(xy)2]) (by (c))

= [µ1](1 + [µ1µ2])

= [µ1] + [µ2] (by (c)).

We conclude that ϕ : M(k)→ 〈[k×] | R〉 is well-defined, and it is clearly a monoid homomorphism.

As indicated previously, the induced map ϕ̃ : GW(k) → 〈[k×] | R〉 is then clearly an inverse to ˜̃
f ,

concluding our proof. �

Corollary 15.5. Let WR ⊆ Z[[k×]] be the set consisting of expressions of one of the following three
forms:
(a) [1]− 1,
(b) [λµ]− [λ][µ] for λ, µ ∈ k×,
(c) [λ] + [µ]− [λ+ µ](1 + [λµ]) for λ, µ, λ+ µ ∈ k×,
(d) [1] + [−1].
Then

W(k) ∼=
〈
[k×] |WR

〉
.

Proof. This is immediate since we have added in the relation (d) which mandates h = 0. �

16. ORDERINGS AND SIGNATURES

We have already seen that the signature of a quadratic form is a powerful invariant when work-
ing over the field of real numbers. It turns out that there is a signature invariant associated with
every ordering of a field. (The signature of Section 14 is the signature relative to the unique or-
dering of R.) Presently, we will develop the theory of field orderings to the extent necessary to
understand signatures in generality. We begin with a seemingly unrelated definition.

Definition 16.1. Given a field k, let σ(k) denote the set of sums of squares in k, and let σ×(k) =
σ(k) r {0}. We call k nonreal if −1 ∈ σ(k). If −1 /∈ σ(k), we call k formally real.

An ordering on a field is a fairly different animal.

Definition 16.2. An ordering of a field k is a proper subset P ( k× which is closed under addition
and multiplication, and satisfies P ∪ (−P ) = k×.

The elements of P are called positive (relative to P ). When λ−µ ∈ P , we write µ < λ or µ <P λ.
In your homework, you will check that<P is a total (linear) ordering of k, and also that every total
order of k satisfying a < b =⇒ a+ c < b+ c and 0 < a, 0 < b =⇒ 0 < ab arises in this way.

Proposition 16.3. If P is an ordering on k, then σ×(k) ⊆ P . In particular, k has characteristic 0.

Proof. If λ ∈ k×, then λ or −λ is in P (since P ∪ (−P ) = k×). Either way, (±λ)2 = λ2 is in P since
P is closed under multiplication. Since P is also closed under addition, σ×(k) ⊆ P .

To deduce that k has characteristic 0, note that 1 = 12 ∈ P , hence every sum 1 + 1 + · · ·+ 1 ∈ P .
Since P ⊆ k×, no such sum is 0. �

The following theorem links ordered for formally real fields.

Theorem 16.4 (Artin–Schreier). A field has an ordering if and only if it is formally real.
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Proof. If a field k has an ordering P , then 1 ∈ P , hence −1 /∈ P and, in particular, −1 /∈ σ×(k), i.e.,
k is formally real.

Now suppose that k is formally real. Define a quasi-ordering of k to be a subset of k× which
is closed under addition and multiplication. Let P0 be the set of sums of nonzero squares in k.
(Careful: a priori, P0 might not equal σ×(k).) It is easy to check that P0 is closed under addition
and multiplication. Furthermore, if 0 ∈ P0, then

0 = λ2
1 + · · ·+ λ2

n

with λ1 6= 0, so
−1 = (λ2/λ1)2 + · · ·+ (λn/λ1)2.

This contradicts the formally real hypothesis on k, so P0 = σ×(k) is a quasi-ordering of k.
By Zorn’s lemma, P0 is contained in a quasi-ordering P of k which is maximal with respect to

inclusion.16 We claim that for λ ∈ k×, either λ ∈ P or −λ ∈ P (and hence P is an ordering). Define

Q = P ∪ λP ∪ (P + λP ),

which is closed under addition and multiplication. IfQ contains 0, then 0 = π′+λπ with π, π′ ∈ P .
Thus

−λ = π′/π = π′π(π−1)2 ∈ P
since P is closed under multiplication and k� ⊆ σ×(k) ⊆ P . On the other hand, if Q does not
contain 0, then Q is a quasi-ordering of k. But Q ⊇ P and P is maximal, so Q = P , and it follows
that λ ∈ P . We have thus shown that P is an ordering, which completes the proof. �

For future reference, we highlight a lemma proved en passant in the above argument.

Lemma 16.5. A field k is nonreal if and only if 0 is a sum of nonzero squares in k.

Proof. The second paragraph of the proof of Theorem 16.4 gives the reverse implication. If k is
nonreal, then −1 =

∑
λ2
i implies that 0 = 12 +

∑
λ2
i . �

Definition 16.6. The setXk of all orderings of k is called the Harrison space of k.17 The set
⋂
P∈Xk

P ⊆
k× is called the set of totally positive elements of k×.

Remark 16.7. Note that when Xk = ∅ (i.e., k is nonreal),
⋂
P∈∅ P = k×.

Lemma 16.8. Let k be formally real and set F = k(
√
λ) be a quadratic extension of k, λ ∈ k× r k�.

Then F is nonreal if and only if −λ ∈ σ×(k).

Proof. If−λ ∈ σ×(k), then (
√
λ)2 + (−λ) = 0 implies that F is nonreal by Lemma 16.5. Conversely,

if F is nonreal, then we may write

−1 =
∑

(ai + bi
√
λ)2

for some ai, bi ∈ k. Since −1 = −1 + 0 ·
√
λ, this tells us that

−1 =
∑

a2
i + λ

∑
b2i .

16Recall that Zorn’s lemma says that in a partially ordered set S in which every chain has an upper bound in S, the
set S contains at least one maximal element. Here a chain is a totally ordered subset of S. In the above paragraph’s
argument, we are taking S to be the set of quasi-orderings on k with partial order given by the subset relation. Check
that chains of quasi-orderings have upper bounds.

17For the topologically inclined: There is a topology on Xk generated by the sets Uλ = {P ∈ Xk | λ ∈ P}, λ ∈ k×.
This makes Xk compact and totally disconnected.
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Since k is formally real, we know that
∑
b2i 6= 0. It follows that

−λ =

(
1 +

∑
a2
i

)(∑
b2i

)−1

.

Since σ×(k) is a group, we conclude that −λ ∈ σ×(k), as desired. �

Theorem 16.9 (Artin). An element λ ∈ k× is totally positive if and only if it is a nonzero sum of squares,
i.e., ⋂

P∈Xk

P = σ×(k).

Proof. If k is nonreal, this statement is a tautology. Suppose that k is formally real. We have
already seen in Proposition 16.3 that σ×(k) ⊆

⋂
P∈Xk

P . Suppose λ ∈ k× r σ×(k). By Lemma 16.8,
F = k(

√
−λ) is formally real. If this is the case, we may pick an ordering P on F , and the reader

may check that P ∩ k× is an ordering on k. Since λ = −(
√
−λ)2, we know that λ ∈ −P ∩ k×, so λ

is not totally positive in k. �

We are now a definition and a few results away from defining the signature relative to an or-
dering.

Definition 16.10. Let P be an ordering of a field k. A symmetric bilinear form (V,B) over k is
postive definite (relative to P ) if B(v, v) ∈ P for all v ∈ V r {0}, and negative definite if B(v, v) ∈ −P
for all v ∈ V r {0}.

We need the following analogue of Sylvester’s law of intertia to define the signature of a regular
quadratic form over k relative to an ordering P ∈ Xk.

Theorem 16.11 (Sylvester’s law of intertia for an ordered field). Any regular symmetric bilinear form
(V,B) over an ordered is isometric to V + ⊥ V − with V + postive definite and V − negative definite. The
dimensions of V + and V − are isometry invariants.

Proof. Choose an orthogonal basis v1, . . . , vn for V , let V + be spanned by the vi such thatB(vi, vi) ∈
P , and let V − be spanned by the vj such thatB(vj , vj) ∈ −P . Then V ∼= V + ⊥ V − with V + postive
definite and V − negative definite.

Now let W be a positive definite subspace of V . Then W ∩ V − = 0, so

dimW ≤ dimV − dimV − = dimV +.

It follows that dimV + is the maximum possible dimension of a positive definite subspace of V ,
and this quantity is clearly invariant under isometry. �

Definition 16.12. If (k, P ) is an ordered field and q is a regular quadratic form over k, define the
P -signature of q to be

sgnP (q) = dimV + − dimV −

where (V,B) is the symmetric bilinear form associated with q.

Theorem 16.11 implies that P -signature is an isometry invariant, and it thus defines a function
sgnP : M(k)→ Z. Working with diagonalizations, it is easy to check that sgnP (f ⊥ g) = sgnP (f) +
sgnP (g), that sgnP (f ⊗ g) = sgnP (f) sgnP (g), and that sgnP (〈1〉) = 1. (In fact, sgnP (〈λ〉) = ±1
according to whether λ ∈ P or λ ∈ −P .) Thus sgnP is a semiring homomorphism that extends
uniquely to a ring homomorphism sgnP : GW(k)→ Z. We also have sgnP (h) = 1− 1 = 0, so sgnP
further extends to W(k).
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Remark 16.13. Some texts produce P -signatures via an alternate method involving taking the real
closure of (k, P ). A field is called real closed if it is formally real, but no proper algebraic extension
of it is formally real. A field extension F ⊇ k is called a real closure of (k, P ) if (a) F is real closed,
(b) F is algebraic over k, and (c) P = k× ∩ F�. As it turns out, real closures exist and are unique
up to order-preserving isomorphism. We let kP denote the real closure of (k, P ). Then W(kP ) ∼= Z,
and sgnP is isomorphic to the extension of scalars homomorphism W(k)→W(kP ).

17. TOTAL SIGNATURE AND PFISTER’S LOCAL-GLOBAL PRINCIPLE

Many fields have multiple (even infinitely many) orderings, so it behooves us to consider all of
the P -signatures (P ∈ Xk) at once. The total signature is the homomorphism

sgn: W(k) −→
∏
P∈Xk

Z

q 7−→ (sgnP (q))P .

Pfister’s local-global principle computes the kernel of this map.

Theorem 17.1 (Pfister’s local-global principle). For any field k, ker(sgn) = W(k)tors, the torsion sub-
group of W(k). Moreover, every element of W(k)tors has order a power of 2.

A full proof of this theorem can be found in [Lam05, §VIII.3] or [MH73, §III.3]. Both proofs
depend on certain information about prime ideals in W(k) and a computation of the kernel of the
homomorphism W(k) → W(k(

√
λ) induced by extension of scalars. In the interest of time, we

will not give all the details here. Note, though, that the inclusion ker(sgn) ⊆W(k)tors is relatively
easy to prove. Indeed, if q ∈ W(k) is torsion, then sgnP (q) = 0 since Z is torsion-free. Since
ker(sgn) =

⋂
P∈Xk

ker(sgnP ), this shows that ker(sgn) ⊆ W(k)tors. For the converse, the crucial
thing to prove is that if q ∈ W(k) is not 2-primary torsion, then there exists an ordering P ∈ Xk

such that sgnP (q) 6= 0.

Remark 17.2. The “local-global” nature of Theorem 17.1 is best understood in the context of Re-
mark 16.13. In this form, the total signature looks like

W(k) −→
∏
P∈Xk

W(kP ).

We think of each real closure kP as “local” information, and of k itself as “global.” Pfister’s theorem
says that taken together (over all P ∈ Xk), the local information detects global torsion.

There are many nice interpretations of Theorem 17.1. Suppose, for instance, that quadratic
forms f and g over k have the same P -signature for all P ∈ Xk. We know, then, that there exists a
postive integer n such that nf ⊥ 〈−1〉ng is hyperbolic; moreover, the smallest such n is a power
of 2.

It is also nice to see that Theorem 17.1 describes the torsion in GW(k). Indeed, GW(k)tors ⊆
GI(k) since classes with nonzero dimension cannot be torsion. Since GI(tors

We would also like to understand the cokernel of sgn, but first we must cut its codomain down
to a more reasonable size. To do so requires the topology on Xk introduced in footnote 17. Let
ZXk denote the ring of continuous functions from Xk (with the Harrison topology) to Z (with the
discrete topology). The function sgn(q) : Xk → Z taking P 7→ sgnP (q) is continuous, so the total
signature factors through ZXk .

Theorem 17.3. The cokernel ZXk/ sgn(W(k)) is a 2-primary torsion group.

Corollary 17.4. Suppose that |Xk| = r < ∞. Then, as an Abelian group, W(k) is isomorphic to
T ⊕ Zr where T is a 2-primary torsion group.
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18. PFISTER FORMS

Given λ1, . . . , λn ∈ k×, the n-fold Pfister form determined by these scalars is

〈〈λ1, . . . , λn〉〉 =

n⊗
i=1

〈1, λi〉 .

By convention, the 0-fold Pfister form is 〈〈〉〉 = 〈1〉, and we may compute

〈〈λ〉〉 = 〈1, λ〉 ,
〈〈λ, µ〉〉 = 〈1, λ, µ, λµ〉 ,

〈〈λ, µ, ν〉〉 = 〈1, λ, µ, ν, λµ, λν, µν, λµν〉 .
Clearly dim 〈〈λ1, . . . , λn〉〉 = 2n.

Pfister forms arise as norm forms of quaternion and Cayley-Dickson algebras, and as trace
forms of multi-quadratic field extensions. They are also important in the study of the I(k)-adic
filtration of W(k).

Proposition 18.1. The n-fold Pfister form 〈〈λ1, . . . , λn〉〉 is hyperbolic if any of the λi has the square
class of −1. If λ1 ∈ k�, then

〈〈λ1, λ2, . . . , λn〉〉 ∼= 2 〈〈λ2, . . . , λn〉〉 .

Proof. If λi ∈ −k�, then there is a factor of h in
∏n
j=1 〈1, λj〉, and Lemma 10.10 implies that

〈〈λ1, . . . , λn〉〉 = 2n−1h.

If λ1 ∈ k�, then 〈1, λ1〉 = 2 〈1〉, given the desired equivalence. �

Proposition 18.2. The ideal I(k)n ⊆W(k) is additively generated by the n-fold Pfister forms.

Proof. We saw in Proposition 12.3 that GI(k) ⊆ GW(k) is additively generated by 〈1〉−〈λ〉, λ ∈ k×.
Since−〈λ〉 = 〈−λ〉 in W(k), we know that 〈1,−λ〉 = 〈〈−λ〉〉, λ ∈ k× generate I(k). For the statement
regarding I(k)n, note that

〈〈λ1, . . . , λn〉〉 = 〈〈λ1〉〉 · · · 〈〈λn〉〉 .
�

Presently, we will concern ourselves with how the properties of n-fold Pfister forms are built up
from those of 1- and 2-fold Pfister forms. Recall that D(q) = Dk(q) is the set of nonzero values in
k represented by a quadratic form q.

Proposition 18.3. (a) For any µ ∈ D(〈〈λ1〉〉), 〈〈λ1, λ2〉〉 ∼= 〈〈λ1, λ2µ〉〉.
(b) For any µ ∈ D(〈λ1, λ2〉), 〈〈λ1, λ2〉〉 ∼= 〈〈µ, λ1λ2〉〉.

Proof. For (a), note that 〈〈λ1, λ2〉〉 = 〈1, λ1〉 ⊥ 〈λ2, λ1λ2〉. The second term is equivalent to 〈λ2〉 〈1, λ1〉 ∼=
〈λ2〉 〈µ, µλ1〉, where the last equivalence uses Proposition 9.1. We thus have the chain of equiva-
lences

〈〈λ1, λ2〉〉 ∼= 〈1, λ1〉 ⊥ 〈µλ2, µλ1λ2〉 ∼= 〈〈λ1, λ2µ〉〉 .
For (b), compute

〈〈λ1, λ2〉〉 ∼= 〈1, λ1λ2, λ1, λ2〉 ∼= 〈1, λ1λ2, µ, λ1λ2µ〉 ∼= 〈〈µ, λ1λ2〉〉
�

The following definition is in analogy with that of chain equivalence.

Definition 18.4. Let 〈〈λ1, . . . , λn〉〉 and 〈〈µ1, . . . , µn〉〉 be two n-fold Pfister forms over k. We say that
these forms are simply P-equivalent if there exist indices i, j such that
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(a) 〈〈λ1, λ2〉〉 ∼= 〈〈µ1, µ2〉〉, and
(b) λk = µk for any k 6= i, j.
(Note that when i = j, we take (a) to mean that 〈〈λi〉〉 ∼= 〈〈µi〉〉.) We say that two n-fold Pfister forms
f and g are chain P-equivalent if there exists a sequence of n-fold Pfister forms f = ϕ0, ϕ1, . . . , ϕm =
g such that ϕi is simply P-equivalent to ϕi+1 for 0 ≤ i ≤ m − 1. When two Pfister forms f, g are
chain P-equivalent, we write f ≈ g.

Clearly f ≈ g implies f ∼= g. The converse is true as well (see [Lam05, Theorem X.1.12]), but we
will not present the proof. Since transpositions generate the symmetric group, we have

〈〈λ1, . . . , λn〉〉 ≈
〈〈
λσ(1), . . . , λσ(n)

〉〉
for any σ ∈ Σn.

Since any Pfister form f represents 1, we may write f ∼= 〈1〉 ⊥ f ′. We call f ′ the pure subform of
f . By the Witt Cancellation Theorem 8.2, the isometry type of f ′ is well-defined.

Theorem 18.5. [Pure suform theorem] Let f = 〈〈λ1, . . . , λn〉〉, n ≥ 1, and let µ ∈ D(f ′). Then there exist
µ2, . . . , µn ∈ k× such that

f ≈ 〈〈µ, µ2, . . . , µn〉〉 .

Proof. We proceed by induction on n. If n = 1, then f = 〈1, λ1〉 and f ′ = 〈λ1〉. We have 〈µ〉 ∼= 〈λ1〉,
so the result follows.

Now assume the theorem holds for (n− 1)-fold Pfister forms. Let

g = 〈〈λ1, . . . , λn−1〉〉 ∼= 〈1〉 ⊥ g′.

Then f = g ⊗ 〈1, λn〉 ∼= g ⊥ 〈λn〉 ⊗ g, so f ′ ∼= g′ ⊥ 〈λn〉 ⊗ g. We have µ ∈ D(f ′), so there exist
x ∈ D(g′)∪ {0} and y ∈ D(g)∪ {0} such that µ = x+ λny. Furthermore, y = t2 + y0 for some t ∈ k
and y0 ∈ D(g′) ∪ {0}.

Proceeding by cases, suppose that y = 0. Then µ = x ∈ D(g′). By the inductive hypothesis,
there exist ν2, . . . , νn−1 ∈ k× such that g ≈ 〈〈x, ν2, . . . , νn−1〉〉. Thus

f ≈ 〈〈x, ν2, . . . , νn−1, λn〉〉 = 〈〈µ, ν2, . . . , νn−1, λn〉〉 ,

and we are done.
Now suppose that y 6= 0. We will first show that f ≈ 〈〈λ1, . . . , λn−1, λny〉〉. If y0 = 0, then

y = t2 ∈ k�, and this is obvious. So we may assume y0 ∈ D(g′). By the inductive hypothesis,
g ≈ 〈〈y0, µ2, . . . , µn−1〉〉 for some µi ∈ k×. Thus

f ≈ 〈〈y0, µ2, . . . , µn−1, λn〉〉
≈
〈〈
y0, µ2, . . . , µn−1, λn(t2 + y0)

〉〉
by Proposition 18.3(a)

≈ 〈〈λ1, . . . , λn−1, λny〉〉 ,

as claimed.
If x = 0, then λny = µ, and we are done. Thus we may assume x ∈ D(g′). By our inductive

hypothesis, g ≈ 〈x, ν2, . . . , νn−1〉 for some νi ∈ k×. Thus

f ≈ 〈〈x, ν2, . . . , νn−1, λny〉〉
≈ 〈〈x+ λny, ν2, . . . , νn−1, λnxy〉〉 by Proposition 18.3(b)

≈ 〈〈µ, ν2, . . . , νn−1, λnxy〉〉 .

This completes the proof. �

In the course of the above proof, we encountered the following phenomenon.
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Proposition 18.6. Let g = 〈〈λ1, . . . , λn−1〉〉 and let y ∈ D(g). Then for any λn ∈ k×,

〈〈λ1, . . . , λn−1, λn〉〉 ≈ 〈〈λ1, . . . , λn−1, λny〉〉 .
In particular, 〈〈λ1, . . . , λn−1, y〉〉 ≈ 2g and 〈〈λ1, . . . , λn−1,−y〉〉 ∼= 2n−1h.

Proof. The first portion is proved in the y 6= 0 case above. By setting λn = ±1, we get the second
statement. �

Theorem 18.7. If a Pfister form is isotropic, then it is hyperbolic.

Proof. Suppose that f is an isotropic Pfister form. Then f contains a hyperbolic plane, hence
−1 ∈ D(f ′). By Theorem 18.5, f ≈ 〈〈−1, . . .〉〉, which is hyperbolic. �

We now introduce similarity factors, a concept crucial to the development of Pfister’s theory.

Definition 18.8. For any quadratic form q,

G(q) = Gk(q) = {λ ∈ k× | 〈λ〉 ⊗ q ∼= q}
is called the group of similarity factors of q.

Remark 18.9. We clearly have 1 ∈ G(q), and 〈λ〉 ∼=
〈
λ−1

〉
, so G(q) is closed under inverses. If

λ, µ ∈ G(q), then 〈λµ〉 ⊗ q ∼= 〈λ〉 ⊗ (〈µ〉 ⊗ q) ∼= 〈λ〉 ⊗ q ∼= q, so G(q) is in fact a subgroup of k×.

The fact that G(q) is a group will be essential in proving that Pfister forms are group forms. We
will also need the following lemma.

Lemma 18.10. If f and g are regular quadratic forms with dim f = dim g and f ⊥ g is hyperbolic,
then f ∼= 〈−1〉 ⊗ g.

Proof. Assume that dim f = dim g and f ⊥ g ∼= nh for some n ≥ 0. Then f + g = 0 in W(k), so
f = 〈−1〉 ⊗ g in W(k). Since f and 〈−1〉 ⊗ g have the same dimension, it follows that f ∼= 〈−1〉 ⊗ g
by Proposition 12.5(c). �

We are now ready to prove one of the most remarkable properties of Pfister forms.

Theorem 18.11. For any Pfister form f , D(f) = G(f). In particular, f is a group form.

Proof. Suppose that λ ∈ G(f) so that 〈λ〉 ⊗ f ∼= f . Then f has a diagonalization with λ as one of
its coefficients, hence λ ∈ D(f). This proves that G(f) ⊆ D(f).

Now suppose that λ ∈ D(f). The Pfister form f ⊗ 〈〈−λ〉〉 ∼= f ⊥ (〈−λ〉 ⊗ f) contains a subform
〈λ,−λ〉 ∼= h. By Proposition 18.6, f ⊥ (〈−λ〉 ⊗ f) is hyperbolic, so Lemma 18.10 implies that
f ∼= 〈λ〉 ⊗ f . It follows that D(f) ⊆ G(f) as well, so D(f) = G(f). �

Corollary 18.12. Over any field k, 2n 〈1〉 is a group form. In particular, the product of two sums of
2n squares is itself a sum of 2n squares.

Proof. This follows immediately from Theorem 18.11 once we observe that 2n 〈1〉 is the n-fold
Pfister form 〈〈1, . . . , 1〉〉. �

See Remark 6.4 for explicit formulas when n = 1, 2, 3 and further discussion of this problem.

19. MULTIPLICATIVE FORMS

We have just seen that Pfister forms are group forms. Interpreted in the context of function
fields, this has an important consequence. Let x = (x1, . . . , x2m) and let y = (y1, . . . , y2m) be
commuting variables over k and let L = k(x,y) be the field of rational functions in these variables.
If f is an m-fold Pfister form over k, then fL (which is just f with its coefficients considered as
elements of L) is an m-fold Pfister form over L. In particular, f(x) · f(y) = f(z1, . . . , z2m) for some
rational functions zi ∈ k(x,y). The following definition formalizes this property.
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Definition 19.1. Let f be an n-dimensional quadratic form over k and let L = k(x,y) for x =
(x1, . . . , xn), y = (y1, . . . , yn) commuting variables over k. Call f multiplicative if f(x)f(y) ∈
DL(f).

Remark 19.2. By the first paragraph of this section, every Pfister form is multiplicative. Also, if f
is isotropic, then DL(f) = L×, so isotropic forms are multiplicative as well.

Proposition 19.3. A quadratic form f over k is multiplicative if and only if DF (f) is a group for
all field extensions F ⊇ k.

Proof. If DF (f) is a group for all field extensions F ⊇ k, then, in particular, DL(f) is a group for
L = k(x,y). It follows that f(x)f(y) ∈ DL(f), as desired.

Now suppose that f is multiplicative in the sense of Definition 19.1, with

f(x)f(y) = f(z1(x,y), . . . , zn(x,y)).

For any field extension F ⊇ k and λ, µ ∈ Fn, we see that

f(λ)f(µ) = f(z1(λ, µ), . . . , zn(λ, µ)),

forDF (f) is closed under multiplication. We have previously observed that this condition implies
that DF (f) is a group.18 �

We need one more notion of multiplicativity before stating our main theorem.

Definition 19.4. An n-dimensional quadratic form f over k is strongly multiplicative if f(x) ∈
Gk(x)(f) for x = (x1, . . . , xn).

Remark 19.5. (a) The above condition says that 〈f(x)〉 ⊗ f ∼= f over k(x).
(b) If f is a Pfister form over k, then f(x) is clearly in Dk(x)(f), and Dk(x) = Gk(x) by Theo-

rem 18.11, so f is strongly multiplicative.
(c) If f is hyperbolic over k, then Gk(x)(f) = k(x)×, so f is strongly multiplicative.

The following theorem characterizes anisotropic Pfister forms. (Recall from Theorem 18.7 that
isotropic Pfister forms are hyperbolic.)

Theorem 19.6. For any anisotropic quadratic form over k, the following are equivalent:
(a) f is a Pfister form,
(b) f is multiplicative,
(c) f is strongly multiplicative.

Proof sketch. We have already observed that Pfister form are strongly multiplicative, so (a) =⇒
(c).

To prove (c) =⇒ (b), suppose that 〈f(x)〉 ⊗ f ∼= f over k(x). Then f represents f(x)f(y) over
k(x,y), so f is multiplicative.

Finally, we prove (b) =⇒ (a). Assume that f is multiplicative, in which case it is a group
form over k (Proposition 19.3), so 1 ∈ Dk(f). It follows that f contains the 0-fold Pfister form
〈1〉. Choose r maximal such that f contains an r-fold Pfister form ϕ over k, say f ∼= ϕ ⊥ f0. If
dim f0 = 0, we are done, so assume f0

∼= 〈λ, . . .〉.
We claim that ϕ ⊥ 〈λ〉ϕ is an (r + 1)-fold Pfister form which is a subform of f . If so, we have

reached a contradiction since ϕ was maximal. The proof of this claim depends on material we
have not developed, namely the Third Representation Theorem [Lam05, Theorem IX.2.8]. �

Remark 19.7. Note that (a) =⇒ (c) =⇒ (b) does not depend on the anisotropicity hypothesis
above.

18The trick was to notice that DF (f) is closed under inverses: if f(x) = λ, then f(λ−1x) = λ−2λ = λ−1.
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We now now that multiplicative forms are either isotropic or they are anisotropic Pfister forms.
It turns out that isotropic strongly multiplicative forms are precisely the hyperbolic forms, see
[Lam05, Theorem X.2.9].

By definition, multiplicative quadratic forms satisfy the identity

f(x)f(y) = f(z1, . . . , zn)

for some zi ∈ k(x,y). The following theorem tells us something about the form which the zi may
take.

Theorem 19.8. An n-dimensional quadratic form f over k is strongly multiplicative if and only if there
exist z1, . . . , zn ∈ k(x)[y] that are homogeneous degree 1 in y = (y1, . . . , yn).

Proof. First suppose that f is strongly multiplicative, so 〈f(x)〉 ⊗ f ∼= f over k(x). This means that
there is a matrix B ∈ GLn(k(x)) such that

f(x)f(y) = f(yB).

Thus we may take (z1, . . . , zn) = yB, which clearly has the desired form. The converse follows by
reversing these steps. �

20. A GLIMPSE INTO FUNCTION FIELDS AND THE HAUPTSATZ

For R a commutative ring and J ⊆ R an ideal, the J-adic filtration

R ⊇ J ⊇ J2 ⊇ J3 ⊇ · · ·
of R is called Hausdorff if

⋂
n J

n = 0. The Arason–Pfister Hauptsatz tells us that the I(k)-adic
filtration of W(k) is Hausdorff:

Theorem 20.1 (Arason–Pfister Hauptsatz). For all fields k,⋂
n≥0

I(k)n = 0.

This is an immediate consequence of the following theorem.

Theorem 20.2. If q is a positive-dimensional anisotropic form in I(k)n, then dim q ≥ 2n.

For nontorsion elements q ∈ W(k), Pfister’s local-global principle (Theorem 17.1) tells us that
there is an ordering P ∈ Xk such that sgnP (q) 6= 0. If q ∈ I(k)n, then sgnP (q) = 2nk for some
k ∈ Z r {0} (because sgnP I(k) ⊆ 2Z). It follows that dim q ≥ 2n|k| ≥ 2n, so the conclusion of
Theorem 20.2 follows for nontorsion forms.

Despite the ease of this argument in the nontorsion case, Theorem 20.2 for torsion elements is
quite deep and one of the high points of the algebraic theory of quadratic forms. A full proof
would take significant space and time, but we will sketch the main ideas here. See [Lam05, §X.5]
for the details.

The main tool in Arason–Pfister’s proof is the function field of a quadratic form. The definition
of this object depends on the following lemma.

Lemma 20.3. Fix n ≥ 1 and let f(x0, . . . , xn) be a regular (n+ 1)-dimensional quadratic form over
k. Then f is reducible in k[x0, . . . , xn] if and only if n = 1 and f ∼= h.

Proof. Suppose that f is reducible. Then it factors as a product of two linear forms (linear polyno-
mials with constant term 0). This happens if and only if f is isometric to x0x1

∼= h. �

Definition 20.4. For f 6∼= h a regular quadratic form over k of dimension at least 2, the function field
of f is

k[f ] = Frac k[x]/(f(x)),

the field of fractions of k[x]/(f(x)), where x = (x0, . . . , xn) is the set of variables for f .
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Remark 20.5. By Lemma 20.3, we know that f is irreducible as a polynomial in the above definition.
Since k[x] is a unique factorization domain, it follows that the ideal (f(x)) is prime, so k[x]/(f(x))
is an integral domain, so it has a field of fractions.

Remark 20.6. If we diagonalize f as 〈λ0, . . . , λn〉, then

k[f ] ∼= Frac k[x]/(λ0x
2
0 + · · ·+ λnx

2
n).

Thus in k[f ], we have x0 =
√
−(λ1x2

1 + · · ·+ λnx2
n)/λ0. It follows that k[f ] is a quadratic extension

of a rational function field in n variables, i.e.,

k[f ] = k(x1, . . . , xn)

(√
−(λ1x2

1 + · · ·+ λnx2
n)/λ0

)
.

Remark 20.7. For λ ∈ k×, we have (λf(x)) = (f(x)) as ideals in k[x]. It follows that

k[f ] = k[〈λ〉 ⊗ f ],

so function fields do not distinguish similar quadratic forms. Note, though, that k[f ] = k[g] does
not necessarily imply that f = 〈λ〉 ⊗ g for some λ ∈ k×.

Clearly k[f ] is a field extension of k, so extension of scalars induces a homomorphism res
k[f ]
k : W(k)→

W(k[f ]). Since f(x) = 0 in k[f ], we know that f is isotropic over f . It turns out to be quite inter-
esting to study what other quadratic forms become isotropic, or even hyperbolic, over k[f ]. This
latter class is precisely the kernel of res

k[f ]
k , which we give a special name, W(k[f ]/k).

Theorem 20.8. If q ∈ W(k[f ]/k) and 1 ∈ Dk(f), then f(x) ∈ Gk(x)(q) where dim f = n + 1 and
x = (x0, . . . , xn). If q is anisotropic and λ ∈ Dk(q), then 〈λ〉 ⊗ f is a subform of q; in particular,
dim q ≥ dim f as long as dim q 6= 0.

We defer the proof of Theorem 20.8 for the moment and instead see how it is used to prove the
Hauptsatz.

Proof of Theorem 20.2. Suppose that f is a positive-dimensional anisotropic form in I(k)n. Since
n-fold Pfister forms generate I(k)n, we know that

f = ε1ϕ1 + · · ·+ εrϕr

where each εi ∈ {±1} and the ϕi are anisotropic n-fold Pfister forms. To show that dim f ≥ 2n, we
proceed by induction on r. If r = 1, then f = 〈±1〉ϕ1, so dim q = 2n, as desired.

For the induction step, consider the image of f in L = k[ϕ1]. Writing gL = resLk g and noting
that (ϕ1)L = 0 (since isotropic Pfister forms are hyperbolic by Proposition 18.6), we get

fL = ε2(ϕ2)L + · · ·+ εr(ϕr)L ∈ I(L)n.

If fL is hyperbolic, then Theorem 20.8 implies that dim f ≥ dimϕ1 = 2n. Thus we may assume that
(fL)an, the anisotropic part of fL, is a positive-dimensional form in I(L)n. Invoking the inductive
hypothesis over L implies that dimL(fL)an ≥ 2n. But then

dimk f = dimL fL ≥ dimL(fL)an ≥ 2n,

as desired. �

We conclude this section by sketching the proof of Theorem 20.8, which was crucial to the above
argument. See [Lam05, Theorem 4.5] for details.
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Proof sketch for Theorem 20.8. Since 1 ∈ Dk(f), we have f ∼= 〈1〉 ⊥ f ′, whence

L = k[f ] = F (
√
−f ′(x′))

where x′ = (x1, . . . , xn) and F = k(x′). Without loss of generality, we may assume that q is
anisotropic over k. One can then check that fF = resFk f is anisotropic (using, for instance, [Lam05,
Lemma IX.1.1]). By hypothesis, fL = resLk f = resLF fF is hyperbolic. One then checks that this
implies

(20.9) fF ∼= g ⊗
〈
1, f ′(x′)

〉
over F (using [Lam05, Theorem VII.3.2]). Over the rational function F (x0) = k(x), we know that
〈1, f ′(x′)〉 represents x2

0 + f ′(x′) = f(x). Since 〈1, f ′(x′)〉 is a Pfister form over k(x), Theorem 18.11
implies that f(x) is a similarity factor of 〈1, f ′(x′)〉. By (20.9), it follows that f(x) ∈ Gk(x)(q)
as well. The final claim is another consequence of the Third Representation Theorem [Lam05,
Theorem IX.2.8]. �

The missing components of our sketch amount to information about the functorial properties
of W under quadratic and transcendental field extensions, important aspects of quadratic forms
which the reader is invited to study in [Lam05, Chapters VII & IX].

Since we referenced it twice above, we will also state the Third Representation Theorem.

Theorem 20.10 (Third Representation Theorem). For any form f and any anisotropic form g over k,
the following are equivalent:
(a) f(x) ∈ Dk(x)(g),
(b) f is a subform of g over k,
(c) DF (f) ⊆ DF (g) for any field extension F ⊇ k.
In particular, if f(x) ∈ Dk(x)(g), then dim g ≥ dim f .

As a matter of terminology, we note that when f(x) ∈ Dk(x)(g), we say that g dominates f .

21. QUATERNION ALGEBRAS

21.1. Construction and first properties. We now undertake the study of quaternion algebras over
a field k, which are certain 4-dimensional associative, noncommutative algebras. These algebras
are equipped with a norm which is a 2-fold Pfister form, and we will freely use our knowledge
about such objects to deduce theorems.

Some comments on k-algebras are in order before we get started in earnest. A k-algebraA is a k-
vector space equipped with a productA×A→ Awhich is k-bilinear. This makesA into a ring, but
A need not be commutative. Given a set of generators S, we are entitled to talk about the free k-
algebra k 〈S〉 generated by S. It has basis consisting of words in S with product extended bilinearly
from concatenation of words. (These are sometimes referred to as non-commuting polynomial
algebras.) We can then specify an algebra by generators and relations (a presentation) by setting a
generating set S and relations R ⊆ k 〈S〉. If (R) denotes the two-sided ideal generated by R, then
k 〈S〉 /(R) is the k-algebra on generators S with relations R.

A homomorphism of k-algebras f : A → B is a k-linear map which respects products. The free
k-algebra k 〈S〉 satisfies the obvious universal property with respect to such maps, and we have
a k-algebra homomorphism g̃ : k 〈S〉 /(R) → B induced by a function g : S → B if and only if
g(r) = 0 for all r ∈ R.

Let a, b ∈ k×. Then the quaternion algebra A =
(
a,b
k

)
is the k-algebra with generators i and j

defined by the relations
i2 = a, j2 = b, ij = −ji.
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We define k = ij ∈ A. Then k2 = (ij)(ij) = −i2j2 = −ab, and

ik = −ki = aj, kj = −jk = bi.

It follows that any two of the elements i, j, k anticommute.

Remark 21.1. The reader may be most familiar with the case a = b = −1, k = R. In this case,(
−1,−1

R

)
is a division algebra — it satisfies all the field properties except for commutativity of

multiplication. It is not the case, though, that all quaternion algebras are division algebras.

Proposition 21.2. The set {1, i, j, k} form a k-basis of
(
a,b
k

)
.

Proof. Let L = k(α, β) where α2 = −a and β2 = b, and let

i0 =

(
0 α
−α 0

)
, j0 =

(
0 β
β 0

)
in M2×2(L). We may compute

i20 = aI, j2
0 = bI, i0j0 =

(
αβ 0
0 −αβ

)
= −j0i0.

As such, there is a k-algebra homomorphism ϕ :
(
a,b
k

)
→ M2×2(L) with ϕ(i) = i0 and ϕ(j) =

j0. Since {I, i0, j0, i0j0} are linearly independent over L, it follows that {1, i, j, ij} are linearly
independent over k. These elements clearly span

(
a,b
k

)
, so we are done. �

In the following proposition, ∼= denotes isomorphism of k-algebras; two k-algebras A and B are
isomorphic when there is a bijective k-algebra homomorphism A→ B.

Proposition 21.3. (a)
(
a,b
k

)
∼=
(
ax2,by2

k

)
for all a, b, x, y ∈ k×.

(b)
(
−1,1
k

)
∼= M2×2(k).

Proof. (a) LetA =
(
a,b
k

)
with the usual basis {1, i, j, k}, and letA′ =

(
ax2,by2

k

)
with basis {1, i′, j′, k′}

such that i′2 = ax2, j′2 = by2, and i′j′ = −j′i′. By direct computation in A, we have

(xi)2 = x2i2 = ax2, (yj)2 = y2j2 = by2, (xi)(yj) = xy(ij) = −xy(ji) = −(yj)(xi).

It follows that there is a k-algebra isomorphism ϕ : A′ → A such that ϕ(i′) = i and ϕ(j′) = j.
(b) With a = −1 and b = 1, we may take α = β = 1 ∈ k in the proof of Proposition 21.2. This

induces a k-algebra isomorphism ϕ :
(
−1,1
k

)
→M2×2(k) with

ϕ(i) =

(
0 1
−1 0

)
and ϕ(j) =

(
0 1
1 0

)
.

�

By Proposition 21.3(b), we see that 2 × 2 matrix algebras play a special role in the theory of
quaternion algebras. Combined with part (a), we see that when −1//a and 1/b have square roots
in k,

(
a,b
k

)
is a matrix algebra. (Of course, this is equivalent to −a and b having square roots.) It

is also the case that for a field extension L ⊇ k, we have L ⊗k

(
a,b
k

)
∼=
(
a,b
L

)
. Thus by extending

scalars to L = k(
√
−a,
√
b), we get

(
a,b
L

)
∼= M2×2(L).

The center of a k-algebra A is Z(A) = {z ∈ A | xz = zx for all x ∈ A}. We have Z(M2×2(k)) =
kI ∼= k, the scalar matrices. This observation is crucial to the following proof.
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Proposition 21.4. The center of
(
a,b
k

)
is k · 1 ∼= k.

Proof. Let L = k(α, β) with α2 = −a, β2 = b. Then

L⊗k

(
a, b

k

)
∼=
(
a, b

L

)
∼= M2×2(L)

which has center L. It follows that the center of
(
a,b
k

)
is k. �

A matrix algebra M2×2(k) is also simple. This means that it has no nontrivial ideals. Indeed,
suppose that I ⊆ M2×2(k) is an ideal containing a matrix M with a nonzero entry aij in the (i, j)
position. Let Ek` denote the matrix with 1 in the (k, `) position and 0’s elsewhere, and note that

aijEk` = EkiMEj` ∈ I.

Thus (
λ/aij 0

0 λ/aij

)
aijEk` = λEk` ∈ I

for all λ ∈ k and 1 ≤ k, ` ≤ 2. Taking sums of such matrices, we see that I = M2×2(k). This entire
argument generalizes to show that Mn×n(R) is simple whenever R is a division ring.19

Proposition 21.5. Every quaternion algebrea is simple.

Proof. Let L = k(α, β) for α2 = −a, β2 = b. If I ⊆
(
a,b
k

)
is a nontrivial ideal, then L ⊗k I

is a nontrivial ideal of
(
a,b
L

)
∼= M2×2(L) which is simple. Since M2×2(L) is simple, I must be

trivial. �

The quaternions with “no real part” play a special role in the theory.

Definition 21.6. A quaternion α + βi + γj + δk ∈ A =
(
a,b
k

)
is called pure if α = 0. The k-vector

space of pure quaternions in A is denoted A0.

Remark 21.7. Any endomorphism of a finite-dimensional simple algebra necessarily has trivial
kernel and is thus an automorphism.

Proposition 21.8. Let 0 6= v ∈ A =
(
a,b
k

)
. Then v ∈ A0 if and only if v /∈ k and v2 ∈ k.

Proof. If v = α+ βi+ γj + δk, then

v2 = (α2 + aβ2 + bγ2 − abδ2) + 2α(βi+ γj + δk)

by direct computation. Thus if v ∈ A0, then v2 = α2 + aβ2 + bγ2 − abδ2 ∈ k. If v /∈ k and v2 ∈ k,
then the above equation implies α = 0, so v ∈ A0. �

Corollary 21.9. If A and A′ are quaternion algebras over k and ϕ : A → A′ is a k-algebra isomor-
phism, then ϕ(A0) = A′0.

We conclude this section by making some statements about the original quaternion algebra,
H =

(
−1,−1

R

)
.

19Wedderburn’s theorem says that all finite-dimensional simple k-algebras are of this form.
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Proposition 21.10. The quaternion algebra H is isomorphic to the R-subalgebra of M2×2(C) con-

sisting of matrices of the form
(
α −β
β α

)
where α, β ∈ C. The group of unit quaternions

U = {x+ yi+ zj + wk | x2 + y2 + z2 + w2 = 1} ≤ H×

is isomorphic to the special unitary group SU(2).

The first identification is derived by considering how expressions of the form α + jβ multiply
when α, β ∈ C. The group SU(2) consists of 2 × 2 unitary matrices (AA∗ = A∗A = I where ( )∗

is conjugate transpose) with determinant 1. This identifies the group structure on the 3-sphere
S3 = U .

21.2. Norm forms of quaternion algebras. The reader will recall that the complex numbers have
an automorphism given by complex conjugation: z 7→ z, where a+ bi = a − bi for a, b ∈ R. The
quaternion algebra A =

(
a,b
k

)
supports a similar operation which we call the bar involution. If

z = α+ βi+ γj + δk for α, β, γ, δ ∈ k, we define

z = α− (βi+ γj + δk).

We may then compute

z + w = z + w, zw = wz, z = z, and λz = λz

for z, w ∈ A and λ ∈ k. This means that ( ) : A→ A is an anti-automorphism of order 2.

Definition 21.11. The norm and trace maps on A =
(
a,b
k

)
are defined as

N: A −→ k and Tr: A −→ k

z 7−→ zz z 7−→ z + z.

Remark 21.12. In order to check that the codomains are accurate, one may check that N z = N z

and Tr z = Tr z.

Now consider the symmetric bilinear form
B : A×A −→ k

(z, w) 7−→ 1

2
(zw + wz) =

1

2
Tr(zw).

The associated quadratic map takes z 7→ B(z, z) = 1
2 Tr(zz) = zz = N z, so we conclude that N is

a quadratic map on A. We may thus refer to N as the norm form of A.
We leave it to the reader to produce a proof of the following proposition (presumably by direct

computation and basic properties of Tr).

Proposition 21.13. The quadratic space (A,B) has orthogonal basis {1, i, j, k} and associated di-
agonalization

〈1,−a,−b, ab〉 = 〈1,−a〉 ⊗ 〈1,−b〉 = 〈〈−a,−b〉〉 .

Remark 21.14. It follows that if z = α+ βi+ γj + δk with α, β, γ, δ ∈ k, then

N z = α2 − β2a− γ2b+ δ2ab.

Thus N z = N z for all z ∈ A, whence the bar involution is an isometry of the quadratic space A.
Also note that H =

(
−1,−1

R

)
, we get

N(α+ βi+ γj + δk) = α2 + β2 + γ2 + δ2

the (squared) Euclidean norm on R4.
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Proposition 21.15. (a) For z, w ∈ A =
(
a,b
k

)
, N(zw) = (N z)(Nw).

(b) A quaternion z ∈ A is a unit if and only if N z 6= 0 (i.e., z is anisotropic in the quadratic space
A).

Proof. (a) We compute

N(zw) = zwzw = z(ww)z = (Nw)zz = (N z)(Nw).

(b) If z−1 exists, then 1 = N(1) = N(zz−1) = (N z)(N z−1), so N z 6= 0. Conversely, if N z 6= 0, then
the equation zz = N(z) · 1 implies that z−1 = (1/N z) · z.

�

Remark 21.16. From Proposition 21.15(a), we directly see that N is a group form over k. Of course,
given Theorem 18.11 we already knew this since N is a Pfister form. Since N is strongly multiplica-
tive by Theorem 19.6, we also have that λ ∈ Dk(N) if and only if 〈λ〉 ⊗N ∼= N.

We can now state and prove an important theorem that classifies quaternion algebras via their
norm forms.

Theorem 21.17. For A =
(
a,b
k

)
and A′ =

(
c,d
k

)
with norm forms N and N′, respectively, the following

statements are equivalent:
(a) A is isomorphic to A′ as k-algebras,
(b) N is isometric to N′, and
(c) A0 is isometric to A′0 as quadratic spaces.

Proof. The equivalence (b) ⇐⇒ (c) is clear from Witt’s Cancellation Theorem 8.2. We now show
(a) =⇒ (b). Suppose that ϕ : A ∼= A′ as k-algebras. We must show that ϕ is an isometry N ∼= N′.
By Corollary 21.9, ϕ(A0) = A′0. Write z = α + z0 for α ∈ k and z0 ∈ A0. Then z = α − z0,
ϕ(z) = α+ ϕ(z0), and ϕ(z) = α− ϕ(z0). Since ϕ(z0) ∈ A′0, we have ϕ(z) = ϕ(z). Thus

N′ ϕ(z) = ϕ(z) · ϕ(z) = ϕ(z) · ϕ(z) = ϕ(zz) = ϕ(N z) = N z

as desired.
Finally, we show that (c) =⇒ (a). Assume that σ is an isometry σ : (A0,N |A0) ∼= (A′0,N

′ |A′0).
Then

N′ σ(i) = N i = −a and N′ σ(i) = σ(i)σ(i) = −σ(i)2

because z0 = −z0 for z0 ∈ A′0. Therefore σ(i)2 = a, and similarly σ(j)2 = b. Lastly, since B(i, j) =
0, we know thatB(σ(i), σ(j)) = 0, whence σ(i)σ(j) = −σ(j)σ(i) ∈ A′. Taken together, these imply
that A′ ∼=

(
a,b
k

)
= A. �

Corollary 21.18. The quaternion algebras
(a,a

k

)
and

(
a,−1
k

)
are isomorphic.

Proof. The associated norm forms are〈
1,−a,−a, a2

〉
and 〈1,−a, 1,−a〉

which are isometric. �

We have already seen that in special circumstances,
(
a,b
k

)
is isomorphic to the 2 × 2 matrix

algebra M2×2(k). When this happens, we call
(
a,b
k

)
split (or split over k, more verbosely, a split

quaternion algebra over k). The following theorem characterizes split quaternion algebras in a num-
ber of useful ways.

Theorem 21.19. For A =
(
a,b
k

)
with norm form N, the following statements are equivalent:
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(a) A is split,
(b) A is not a division algebra,
(c) N is isotropic,
(d) N is hyperbolic,
(e) N |A0 is isotropic,
(f) (〈a〉 − 1)(〈b〉 − 1) = 0 ∈ GW(k) or W(k),
(g) the binary form 〈a, b〉 represents 1,
(h) a ∈ NL/k(L) where L = k(

√
b) and NL/k : L→ k is the field norm for the extension k ⊆ L.

Of course, we can use the above conditions to determine when A =
(
a,b
k

)
is not split, in which

case A is a division algebra!

Proof. Since
(

1,−1
k

)
is split and has norm form 2h, Theorem 21.17 implies that (a), (d), (f), and (g)

are equivalent. By Theorem 18.7, isotropic Pfister forms are hyperbolic, so these are all equivalent
to (c) as well.

Next, we show that (d) =⇒ (e) =⇒ (c). If (d) holds, then N |A0
∼= 〈−1, 1− 1〉 is isotropic, so (e)

holds. Also then N is isotropic, so (c) holds.
Given Proposition 21.15(b), we also have (a) =⇒ (b) =⇒ (c). This proves the equivalence of

(a)–(g).
Finally, we show (g) ⇐⇒ (h). If b ∈ k�, then L = k, NL/k = id, and (g) and (h) are clearly

equivalent. Assume then that b ∈ k× r k�. In this case, NL/k : x + y
√
b 7→ x2 − by2 for x, y ∈ k.

Thus (h) holds if and only if a ∈ Dk(〈1,−b〉). If a = x2 − by2 and x 6= 0, then 1 = a(1/x)2 +
b(y/x)2; if x = 0, then 〈a, b〉 ∼= 〈−b, b〉 ∼= h which is universal. The converse follows from similar
computations. �

The most classical of the above conditions is (f), which says that 1 ∈ Dk(〈a, b〉), i.e., that there
exists a solution (x, y) ∈ k2 to the equation ax2 + by2 = 1. This is called the Hilbert equation, and is
closely related to the notion of a Hilbert symbol, which we will study later.

Corollary 21.20. (a) For all a ∈ k×,
(

1,a
k

)
and

(a,−a
k

)
are both split.

(b) For 1 6= a ∈ k×,
(
a,1−a

k

)
is split; this is known as the Steinberg relation.

(c) The quaternion algebra
(
−1,a
k

)
splits if and only if a is a sum of two squares in k.

Proof. For (a) and (b), just note that 〈1, a〉, 〈a,−a〉 ∼= h, and 〈a, 1− a〉 all represent 1. For (c), a
computation shows that 〈−1, a〉 represents 1 if and only if 〈1, 1〉 represents a. �

Corollary 21.21. If k is a field over which every binary form is universal (e.g., k = Fq, k quadrati-

cally closed, or k = F (t) for F algebraically closed), then
(
a,b
k

)
is split for all a, b ∈ k×. �

We will now explore some examples that utilize our new theorems.

Example 21.22. If a, b ∈ Q<0, then DQ(〈a, b〉) ⊆ Q<0, and thus 〈a, b〉 does not represent 1. As such,(
a,b
Q

)
is nonsplit in this case. This can also be seen by extending scalars to R:

R⊗Q

(
a, b

Q

)
∼=
(
a, b

R

)
∼=
(
−1,−1

R

)
= H,

which is a division algebra.
52



Example 21.23. Consider the quaternion algebras A =
(
−1,−1

Q

)
and A′ =

(
−2,−3

Q

)
. The reader

may check the isometries

〈1, 1, 1, 1〉 ∼= 〈1, 1, 2, 2〉 ∼= 〈1, 3, 6, 2〉 ∼= 〈1, 2, 3, 6〉 .

Of course, the first and last forms are the norm forms of A and A′, respectively, so A ∼= A′.

Example 21.24. We can show that the quaternion algebra A =
(

5,−3
Q

)
is a division algebra, but

L ⊗Q A is split for L = Q(
√

17). Indeed, A is split if and only there are relatively prime integers
x, y, z such that 5x2− 3y2 = z2. The reader may check that this is impossible (perhaps by working
mod 3). Meanwhile, the equation 5 ·22−3 = 17 implies that 〈5,−3〉 represents 1 over L = Q(

√
17),

so L⊗Q A is split.

22. LOCAL FIELDS

We will now take a brief detour in order to introduce an important class of fields, namely lo-
cal fields. These include the p-adic rationals Qp and function fields over finite fields Fq(t). This
material will link back with quaternion algebras and quadratic forms when we study Hilbert reci-
procity in the next section.

Definition 22.1. A discretely valued field is a field k equipped with a surjective homomorphism
v : k× → (Z,+) such that v(a + b) ≥ min{v(a), v(b)} for a, b, a + b ∈ k×. By convention, we define
v(0) =∞. Then

Ov = {x ∈ k | v(x) ≥ 0}
is a subring of k called the valuation ring of (k, v).

Note that the homomorphism condition on v amounts to v(ab) = v(a) + v(b). This, combined
with v(a+ b) ≥ min{v(a), v(b)}, makes it clear that Ov really is a subring.

Example 22.2. (a) The most famous discretely valued field is Q with the p-adic valuation vp, p
a prime. For a ∈ Z, we let vp(a) = n when a = pnm, p - m. If a/b ∈ Q, then vp(a/b) =
vp(a)− vp(b). The reader may check that vp satisfies the properties of a valuation.

(b) Similarly, let p ∈ k[t] be an irreducible polynomial. Measuring the divisibility of the numerator
and denominator of a rational function over k induces a valuation on k(t) also denoted vp.

(c) The field of Laurent series k((t)) also supports a discrete valuation. This consists of series of
the form

f =
∞∑
i=m

λit
i

where m ∈ Z and λi ∈ k under formal addition and multiplication. If λm 6= 0 in the above
expression, then we define v(f) = m.

Definition 22.3. A commutative ring R is called local if it has a unique maximal ideal.

Proposition 22.4. The valuation ring Ov of a discretely valued field (k, v) is a local ring with unique
maximal ideal

mv = {x ∈ k | v(x) ≥ 1}.
Furthermore,

Frac Ov = k

and
O×v = {x ∈ k | v(x) = 0}.
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Proof. First note that if x ∈ k r Ov, then v(x) < 0, whence 0 = v(1) = v(xx−1) = v(x) + v(x−1)
implies that v(x−1) > 0, i.e., x−1 ∈ Ov. It follows that x = 1/x−1 ∈ Frac Ov, and this is enough to
show that Frac Ov = k.

Next, we show that O×v = {x ∈ k | v(x) = 0}. Indeed, if x, y ∈ Ov with xy = 1, then applying
v we find that 0 = v(x) + v(y). Since v(x), v(y) ≥ 0, it follows that v(x) = 0. This implies that
O×v ⊆ {x ∈ k | v(x) = 0}. Now suppose that x ∈ k has v(x) = 0. Then x 6= 0 since v(0) = ∞, so x
has an inverse x−1 ∈ k. The equation 1 = xx−1 implies that 0 = v(x) + v(x−1) = v(x−1), so x−1 is
in fact in Ov. This proves that O×v = {x ∈ k | v(x) = 0}.

We see now that mv = OvrO×v is the set of nonunits in Ov. The reader may check that properties
of v imply that mv is an ideal. If I ⊆ Ov is an ideal properly containing mv, then I contains a unit
of Ov and thus I = Ov. This shows that mv is maximal. If J ⊆ Ov is another maximal ideal, then J
contains no units of Ov and thus J ⊆ mv. By maximality of J , J = mv, so mv is the unique maximal
ideal of the local ring Ov. �

We can say yet more about the structure of mv and the rest of the ideals in Ov.

Definition 22.5. Any element π ∈ Ov with v(π) = 1 is called a uniformizer of Ov.

Proposition 22.6. If π is a uniformizer of Ov, then

mv = (π).

If π′ is another uniformizer of Ov, then π′ = uπ for some unit u ∈ O×v .

Proof. Moral exercise. �

The following proposition specifies all ideals in Ov.

Proposition 22.7. The ring Ov is a principal ideal domain; in fact, every ideal in Ov is of the form
mn
v = (πn) for some n ∈ N and uniformizer π. The full lattice of ideals in Ov is

Ov ) mv ) m2
v ) · · · ) 0

with
⋂
im

i
v = 0.

Proof. Moral exercise. �

Since mv is maximal, we know that Ov/mv is a field, and it gets a special name.

Definition 22.8. The field κ(v) = Ov/mv is called the residue field of (k, v).

Remark 22.9. The study of discrete valuation fields (DVFs) is essentially the same as that of discrete
valuation rings (DVRs). A DVR is, by definition, a local principal ideal domain. Thus every DVF
(k, v) has an associated DVR Ov. Given a DVRAwith maximal ideal m and fraction field k, we can
define a valuation

vm : k→ Z
which takes a ∈ mn to v(a) = n for n ∈ N, and takes a/b ∈ k to v(a)− v(b). It is straightforward to
check that Ovm = A.

We may attach the metric
dv : k× k −→ R

(x, y) 7−→ exp(−v(x− y))

to a discretely valued field (k, v).20 Under this metric, x and y are close together when the valuation
of x− y is large, which is equivalent to x− y ∈ mn

v for n large.

20There is nothing special about using the base e exponential — we could replace it with a−v(x−y) for any real
number a > 1 and we would get an isometric metric space. When working with the p-adic valuation, it is traditional
to take a = p.
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Recall that a metric space (X,d) is called complete if every Cauchy sequence in X converges (to
an element of X). We call (k, v) a complete discretely valued field (or CDVF) if k is complete with
respect to dv. Those familiar with inverse limits may verify the following proposition.

Proposition 22.10. A discrete valuation field (k, v) is complete if and only if the natural map Ov →
limn Ov/m

n
v is surjective (and hence an isomorphism of rings).

This essentially says that if x1, x2, . . . is a sequence in Ov with xi+1 ≡ xi (mod mi
v) for all i, then

Ov contains an element x such that x ≡ xi (mod mi
v) for all i.

With any luck, you have seen in an analysis class that every metric space has a completion.
If (X,d) is a metric space, its completion (X, d) is a metric space containing X as a dense sub-
space and such that if f : X → Y is a uniformly continuous function, then there is a unique
uniformly continuous function f : X → Y extending f . The completion may be constructed as
the set of equivalence classes of Cauchy sequences in X , where if x = (xi) and y = (yi) are
Cauchy sequences, then d(x, y) = limi d(xi, yi); we declare two Cauchy sequences equivalent
when d(x, y) = 0.

The completion kv of any discretely valued field (k, v) is in fact a complete discretely valued
field. If x = (xi) and y = (yi) are equivalence classes of Cauchy sequences in (k,dv), we define
their sum and product through coordinatwise addition and multiplication. (The reader may check
that this is well-defined.) We recover a valuation by taking − log d(x, 0), which is automatically
complete.

Example 22.11. The completion of Q with respect to the p-adic valuation vp (p a prime number)
is called Qp, the p-adic rationals. The valuation ring of Qp is denoted Zp and is called the p-adic
integers. We have Zp = limi Z/piZ. We may take p as a uniformizer of Zp, and κ(vp) = Zp/pZp ∼=
Fp.

Example 22.12. The completion of k(t) with respect to the t-adic valuation is the field of formal
Laurent series k((t)). The valuation ring of k((t)) is k[[t]], the ring of formal power series, t is a
uniformizer, and the residue field is k.

We will now investigate the connections between arithmetic in a complete discretely valued
field (k, v) and its residue field κ(v). For x ∈ Ov, let x = x+ mv ∈ κ(v) = Ov/mv.

Lemma 22.13. Let (k, v) be a CDVF with characteristic not 2. For any u ∈ O×v , u is a square in k (or
O×v ) if and only if u is a squre in κ(v).

Proof. The forwards implication is trivial. For the backwards implication, suppose m = mv and
suppose that u ∈ κ(v)�. We will construct a sequence (xi) in O×v such that

x2
i ≡ u (mod mi) and xi+1 ≡ xi (mod mi)

for all i ≥ 1. If we have such a sequence, then its limit x will satisfy x2 − u = limi(x
2
i − u) = 0, as

desired.
Since u is a square in κ(v), x1 exists. For induction, suppose that we have constructed the

element xi as required. Let xi+1 = xi +πiz where π is a uniformizer and z is to be determined. We
have x2

i − u = πiy for some y ∈ Ov, so

x2
i+1 − u ≡ (xi + πiz)2 − u ≡ πi(y + 2xiz) (mod mi+1).

Since the characteristic of κ(v) is not 2, we have 2xi ∈ O×v . Set z = (π−y)/(2xi) so that y+2xiz = π.
Then xi+1 ∈ O×v , and

x2
i+1 ≡ u (mod mi+1) and xi+1 ≡ xi (mod mi)

as needed. �
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Corollary 22.14. Under the hypotheses of Lemma 22.13, a nonzero element uπn (u ∈ O×v , n ∈ Z)
is a square in k if and only if n is even and u ∈ κ(v)�.

Lemma 22.13 enables us to define a group homomorphism i : κ(v)×/κ(v)� → k×/k� in the
following fashion. Given u ∈ κ(v)�, let u be any lifting of u to O×v . If u′ is another lifting, then
u/u′ = 1, so Corollary 22.14 implies that u ∈ u′k�. The rule i(u) = uk� is thus a well-defined
homomorphism.

Corollary 22.15. Under the hypotheses of Lemma 22.13, the sequence

1 −→ κ(v)×/κ(v)�
i−→ k×/k�

v−→ Z/2Z −→ 0

is split exact. (Here v is the mod 2 reduction of v.)

Proof. Exactness is clear given Corollary 22.14. The splitting is given by 1 + 2Z 7→ πk�. �

We are now ready to compute the Grothendieck–Witt ring of a CDVF (k, v) in terms of the
Grothendieck–Witt ring of κ(v), at least when charκ(v) 6= 2. Since GW(Fq) is already known by
Corollary 14.11, this will give a complete computation of GW(Qp), p > 2, and GW(Fq((t))), 2 - q.

Consider the rule 〈u〉 7→ 〈u〉, u ∈ O×v . We claim that this extends linearly to a well-defined
ring homomorphism GW(κ(v))→ GW(k). Indeed, we may simply check that the relations Theo-
rem 15.3 are satisfied. Abusing notation, we will also call this map i : GW(κ(v))→ GW(k).

We now define a second homomorphism j : GW(κ(v))→ GW(k) as the composite

GW(κ(v))
i−→ GW(k)

〈π〉·−−→ GW(k)

which is a homomorphism of Abelian groups. We see that j(hκ(v)) = 〈π〉hk = hk, so the pair (i, j)
induce a group homomorphism

f : GW(κ(v))⊕GW(κ(v))/Z · (h,−h) −→ GW(k).

Theorem 22.16 (Springer’s Theorem). For any CDVF (k, v) with charκ(v) 6= 2, the map f is a group
isomorphism.

This result appears as [Lam05, Theorem VI.1.4] where a full proof is given. The idea is to define
an inverse g to f on generators 〈x〉, x ∈ k×, of GW(k). The rule is that if x = uπm (u ∈ O×v and
m ∈ Z), then

g(x) =

{
(〈u〉 , 0) if m is even,
(0, 〈u〉) if m is odd.

With some effort, one then shows that this assignment respects the relations in the presentation of
GW(k) as an Abelian group. This establishes g as a well-defined group homomorphism, and it is
clearly a two-sided inverse to f .

We also note the following immediate corollary of Theorem 22.16.

Corollary 22.17. For any CDVF (k, v) with charκ(v) 6= 2, the pair (i, j) induces a group isomor-
phism

W(κ(v))⊕W(κ(v)) ∼= W(k).

We now specialize our discussion from complete discretely valued fields to local fields.

Definition 22.18. A CDVF (k, v) is called a local field if the residue field κ(v) is finite. In this case,
the cardinality q = |κ(v)| is called the residue order of (k, v). If 2 | q we call k a dyadic local field, and
if 2 - q, we call k a nondyadic local field.
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Remark 22.19. Some authors call this class of fields the non-Archimedean local fields. The Archimedean
local fields are R and C. In these notes, we will always use the term local field to refer to the non-
Archimedean ones.

Remark 22.20. Local fields have been classified and fall into two camps: equicharacteristic and
mixed characteristic. In the equicharacteristic case, char k = charκ(v), and it turns out that k ∼=
Fq((t)) with the t-adic valuation.

In the mixed characteristic case, char k = 0 and charκ(v) = p for p the unique prime divisor of
the residue field. It turns out that such a k is a finite algebraic extension of Qp, carrying the unique
extension of vp. Such fields are often called p-adic fields.

We have the following omnibus theorem on square classes, quaternion algebras, and (Grothendieck–
)Witt rings of local fields.

Theorem 22.21. Let k be a nondyadic local field with uniformizer π, and let u ∈ O×v be such that u /∈
κ(v)�. Then

(a) k×/k� has order 4 with square classes represented by 1, u, π, uπ,
(b) every quadratic form over k of dimension ≥ 5 is isotropic,
(c) there is a unique 4-dimensional anisotropic quadratic form over k, namely

ϕk = 〈1,−u,−π, uπ〉 = 〈〈−u,−π〉〉 ,

(d) there is a unique nonsplit quaternion algebra over k, namely
(π,u

k

)
,

(e) if the residue order q ≡ 1 (mod 4), then

GW(k) ∼= Z⊕ (Z/2Z)3

additively and W(k) ∼= F2[C2 × C2] as a ring,
(f) if q ≡ 3 (mod 4), then

GW(k) ∼= Z⊕ Z/4Z⊕ Z/2Z

additively and W(k) ∼= (Z/4Z)[C2] as a ring.

Proof. Part (a) follows from Corollary 22.15. For (b), note that Corollary 22.17 implies that for any
CDVF (k, v), if every quadratic form of dimension n+1 over κ(v) is isotropic, then every quadratic
form of dimension 2n+1 over k is isotropic. Since every 3-dimensional quadratic form is isotropic
over Fq, (b) follows. Part (c) can be similarly deduced from Springer’s Theorem 22.16, using the
fact that 〈1,−u〉 is the unique anisotropic form over Fq. With (c) established, (d) immediately
follows by Theorem 21.19.

The proofs of (e) and (f) follow from Theorem 22.16 and Corollary 22.17 and our determination
of GW(Fq) in Corollary 14.11. The details are all worked out in [Lam05, Theorem VI.2.2]. �

Remark 22.22. The reader is encourage to imagine several of the many immediate consequences of
this theorem. For instance, there are exactly 16 isometry classes of anisotropic forms over a local
field!

Notably, the theorem above did not cover the case of dyadic local fields. This is the moment
at which we must confront our sins and recognize the importance of characteristic 2 fields: the
structure of the Grothendieck–Witt ring of a 2-adic field depends on quadratic theory over is char-
acteristic 2 residue field. These notes will not rehearse the intricate steps needed to recover our
balance. The reader is encouraged to look near Theorem VI.2.10 in [Lam05] if they wish to see
why the following statement is true.
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Theorem 22.23. For an arbitrary local field k, there exists u ∈ O×v such that F = k(
√
u) is unramified21

(and the square class of u in k is uniquely determined); furthermore, there is a unique nonsplit quaternion
algebra over k, namely

(π,u
k

)
.

The crucial takeaway is that in both the dyadic and nondyadic cases, there is only one quater-
nion algebra over a local field which is a division algebra.

23. HILBERT RECIPROCITY

In the last section, we emphasized that there are only two isomorphism classes of quaternion
algebras over a local field: split and nonsplit. The same is true over the real numbers. Indeed, for
a, b ∈ R×, 〈a, b〉 represents 1 if and only if one or both of a and b are positive. By Theorem 21.19, this
implies that

(
a,b
R

)
is split if and only if at least one of a, b is positive. If a, b < 0, then 〈〈−a,−b〉〉 ∼=

4 〈1〉, and it follows that
(
a,b
R

)
∼=
(
−1,−1

R

)
= H. These observations allow us to make the following

definition.

Definition 23.1. For k a (non-Archimedean) local field or R, the Hilbert symbol of k is the function

( , )k : k×/k� × k×/k� → {±1}
taking values

(a, b)k =

1 if
(
a,b
k

)
is split,

−1 if
(
a,b
k

)
is nonsplit.

If k = Qp, we write ( , )p = ( , )Qp , and if k = R, we write ( , )∞ = ( , )R.

Note that the Hilbert symbol determines the isomorphism class of
(
a,b
k

)
over such fields. When

convenient, we will also consider the Steinberg symbol as a map k× × k× → {±1}.

Proposition 23.2. The Hilbert symbol is symmetric, bimultiplicative, and satisfies the Steinberg
relation. In equations, these properties say that

» (a, b)k = (b, a)k,
» (ab, c)k = (a, c)k(b, c)k and (a, bc)k = (a, b)k(a, c)k, and
» (a, 1− a)k = 1 for 1 6= a ∈ k×.

Proof. Symmetry is obvious and we have already proven the Steinberg relation in Corollary 21.20(b).
We leave bimultiplicativity as a (difficult?) exercise for the reader. �

Remark 23.3. More is true: the Hilbert symbol is nondegenerate as well, meaning that if (a, b)k = 1
for all a ∈ k×, then b ∈ k�.

Our primary goal in this section is to sketch a proof of Hilbert reciprocity, which relates the
Hilbert symbols for Qp and R.

Theorem 23.4 (Hilbert reciprocity). Let P = {R,Q2,Q3,Q5, . . .}. For all a, b ∈ Q×,∏
k∈P

(a, b)k = 1.

In other words, the set Λ = {k ∈ P | (a, b)k = −1} is finite with even cardinality.

21Ramification is an important topic in local field theory that we will not touch on. There are several equivalent
conditions for an extension k ⊆ L to be unramified. Perhaps most convenient in this setting would be that a uniformizer
π of k remains a uniformizer in L; alternatively (and equivalently), [L : k] is equal to the index of the residue fields.
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Our proof will pass through the Witt ring of Q. While we do not have time to present a proof of
the following theorem, we have developed enough material to make its statement quite precise.
Let ∂∞ : W(Q) → Z be the signature homomorphism. Let ∂2 : W(Q) → Z/2Z be the map q 7→
v2(det q) + 2Z where v2 is the 2-adic valuation. For p > 2 prime, let ∂p : W(Q) → W(Fp) be
the composite W(Q) → W(Qp) → W(Fp) where the map W(Qp) → W(Fp) is the second residue
homomorphism: the unique homomorphism taking 〈u〉 7→ 0 and 〈pu〉 7→ 〈u〉 for u ∈ Z×p . (This
is essentially projection onto the second factor in Springer’s Theorem 22.16.) Finally, let Ω =
{∞, 2, 3, 5, 7, 11, . . .} and let

∂ =
⊕
p∈Ω

∂p : W(Q)→ Z⊕ Z/2Z⊕
⊕
p 6=2,∞

W(Qp).

Theorem 23.5 ([Lam05, VI.4]). The map ∂ is an isomorphism of Abelian groups.

Since W(Q) splits as a direct sum, we know that every homomorphism χ : W(Q) → A to an
Abelian group is uniquely determined by homomorphisms

χ∞ : Z→ A, χ2 : Z/2Z→ A, χp : W(Fp)→ A

such that χ =
∑

p∈Ω χp ◦ ∂p. The determination of the maps χp, p ∈ Ω, for a given homomomor-
phism χ is what W. Scharlau [Sch72] calls the reciprocity law for χ. We will see that Hilbert reci-
procity follows from Scharlau reciprocity for a particular χ applied to the norm forms 〈〈−a,−b〉〉.
In order to proceed, we need to know a littlbe bit about the Witt ring of Q2.

Proposition 23.6. As a ring,

W(Q2) ∼= Z/8Z[s, t]/(s2, t2, 2s, 2t, st− 4).

Additive generators for W(Q2) may be taken as 〈1〉, 〈1,−2〉, and 〈1,−5〉, and these map to 1, s,
and t, respectively, in the above isomorphism.

Proof. See [Lam05, Theorem VI.2.29 and Remark VI.2.31]. �

In order to deduce Hilbert reciprocity, we henceforth fix χ to be the composite homomorphism

W(Q)
res

Q2
Q−−−→W(Q2)

η−→ Z/8Z,

where η is determined by the rules

η(〈1〉) = 1 + 8Z, η(〈1,−2〉) = 0 + 8Z, η(〈1,−5〉) = 4 + 8Z.

The following theorem expresses Scharlau reciprocity for this particular χ (i.e., it determines the
corresponding χp for each p ∈ Ω).

Theorem 23.7. For χ = η ◦ resQ2
Q , we have

χ∞(n) = n+ 8Z,
χ2 = 0,

χp(〈1〉) = p− 1 + 8Z,
χp(ϕp) = 4 + 8Z

for p 6= 2,∞ and ϕp the unique binary anisotropic form over Fp.

Before proving this theorem, we will see how it implies Hilbert reciprocity.
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Proof of Theorem 23.4. Fix a, b ∈ Q× and let Λ = {k ∈ P | (a, b)k = −1} where P = {R,Q2,Q3, . . .}.
We aim to show that |Λ| is even and finite.

Let q = 〈〈−a,−b〉〉 denote the norm form of
(
a,b
k

)
, and let p ∈ Ω r {2,∞}. Then

p ∈ Λ ⇐⇒ q is anisotropic over Qp

⇐⇒ ∂p(q) = ϕp

⇐⇒ χp(∂p(q)) = 4 + 8Z.

Similarly,
∞ ∈ Λ ⇐⇒ q ∼= 〈〈−1, 1〉〉 over R

⇐⇒ χ∞(∂∞(q)) = 4 + 8Z.

Since χ2 = 0 and χ =
∑

p∈Ω χp ◦ ∂p, it follows that

(23.8) χ(q) = 4|Λ r {2}|+ 8Z.

The final ingredient is to figure out what happens at p = 2. If q is isotropic over Q2, then
qQ2 = 0 ∈ W(Q2) and χ(q) = 0 + 8Z. Thus (23.8) implies that |Λ| = |Λ r {2}| is even. If q is
anisotropic over Q2, then χ(q) = η(4 〈1〉) = 4 + 8Z and 2 ∈ Λ. Again (23.8) implies that |Λ| must
be even, and this completes the proof. �

To truly complete the proof of Hilbert reciprocity, we must verify the Scharlau reciprocity for-
mulæ for χ.

Proof sketch for Theorem 23.7. The formula for χ∞ is clear by its definition. In order to determine
χ2, consider that χ(〈−1, 2〉) = 8Z, while ∂p(〈−1, 2〉) = 0 for 2 6= p ∈ Ω and ∂2(〈−1, 2〉) = v2(−2) =
1 + 2Z. It follows that χ2 = 0.

Now consider p ∈ Ω r {∞, 2}. Note that ∂r(〈−1, p〉) = 0 for r 6= p and ∂p(〈−1, p〉) = 〈1〉. Thus
χp(〈1〉) = χ(〈−1, p〉) = χ(〈p〉)− 1 = p− 1 + 8Z, where the last identity follows from the structure
of W(Q2).

It remains to calculate χp(ϕp) for p > 2. If p ≡ 3, 7 (mod 8), then ϕp = 〈1, 1〉 and thus

χp(ϕp) = 2χp(〈1〉) = 2p− 2 + 8Z = 4 + 8Z.

The p ≡ 5 (mod 8) case follows from a similar computation in W(Q2). The p ≡ 1 (mod 8) case is
the hardest. It depends on more calculations in W(Q2) and Gauss’s Lemma, a result from number
theory which states the following:

If p ≡ 1 (mod 8) is prime, then there exists an odd prime q <
√
p such that p is not

a square modulo q.
One uses Gauss’s Lemma to select such a q and then sets ϕ = 〈〈−p,−q〉〉. The prime p is a square
in Q2, so χ(ϕ) = 0. A corollary of Theorem 22.21 implies that

(
p,q
Qr

)
splits for r ∈ Ω r {p, q}, so

∂r(ϕ) = 0 for r ∈ Ω r {p, q}. Thus

0 = χ(ϕ) = χp∂p(ϕ) + χq∂q(ϕ) = χp(〈−1, q〉) + χq(〈−1, p〉).

Since p is not a square modulo q, we have ϕq ∼= 〈−1, p〉. We may make the inductive hypothesis22

that χq(ϕq) = 4 + 8Z, which then forces χp(〈−1, q〉) = 4 + 8Z. It follows that 〈−1, q〉 ∼= ϕp over Fp.
We conclude that χp(ϕp) = 4 + 8Z, as desired. �

22The careful reader will note at this point that we did not need the full q <
√
p power of Gauss’s Lemma, but rather

only that such a q < p existed.
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Modulo several lacunæ — namely Gauss’s Lemma and the computations of W(Q) and W(Q2)
— the reader should now have an appreciation of how Hilbert reciprocity is a special case of Schar-
lau reciprocity (for a particular χ) applied to norm forms of quaternion algebras. The content in
this section was based on Scharlau’s original paper [Sch72] (and Lam’s recapitulation thereof in
[Lam05, VI.5]). The paper [Sch72] is a font of wisdom on this subject, and much of it is approach-
able by the reader at this point. Of particular interest might be Scharlau reciprocity for rational
function fields, which is also covered in [Lam05, IX.4].
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