
MATH 412: TOPICS IN ALGEBRA
FINAL HOMEWORK

Instructions: Select and solve three of the following homework problems written by your peers
and related to their final projects. (You may not select your own problem.) Turn in your solutions
at the start of the final exam: 18 December, 9A.M.–12P.M. in Eliot 207.

Problem 1 (Evan). Do one of the following two problems:

(a) Show inductively (without making use of the fact that Pfister forms are group forms) that if
x ∈ k× is a sum of 2n squares, then

2n 〈1〉 ∼= 2n 〈x〉

and, from this, deduce that 2n 〈1〉 is a group form.
(b) Let k = R((x)). Verify that |k×/k�| = 4 and that k is Pythagorean in order to conclude that

W(k) = Z[G] where G is the group with elements {1, x}.

Problem 2 (Yunjia). Do one (or a few if you feel like it) of the following six problems on Clifford
algebras. The number of stars indicates difficulty.

(a) A nice warm-up (?):
As shown in section 0, there is a hidden subalgebra C insideC(R2, |v|2). But actually, C itself

is a Clifford algebra. Find the quadratic form that generates the “honest” complex number.
What is the quadratic space V in this case? The exterior algebra

∧
(V ) over an n-dimensional

vector space V is an anticommutative algebra such that for any two basis vectors ei, ej , we
have

0 = {ei, ej} = ei ∧ ej + ej ∧ ei,

in which∧ denotes the bilinear multiplication over the algebra. Given an n-dimensional vector
space V = kn, argue that its exterior algebra

∧
(V ) is a Clifford algebra by finding its corre-

sponding quadratic form.

(b) Does it work in 3-dimensional space? (?):
Find C(R3, |v|2) with the standard Euclidean metric | · |2 = 〈1, 1, 1〉. What is its even subal-

gebra C+(R3, |v|2)?

(c) From quadratic space to symmetric bilinear space (??):
Given a quadratic space (V, q), we know that by polarizing q, we obtain a (bijective) sym-

metric bilinear space (V,B). Therefore, it is quite natural to realize that there is an equivalent
definition of the Clifford algebra over a symmetric bilinear space (V,B). How would you
modify the definition of a Clifford algebra to make it compatible over (V,B)? [Hint: Some
hinted structure from eq. (12) of my note may be helpful.]

(d) A quick corollary in class (??):
Show the following proposition.

Proposition 1. For a quadratic space V with two equivalent quadratic forms q ∼= q′, their Clifford
algebra C(V, q) ∼= C(V, q′).
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[Hint: One may find the universal property of Clifford algebras very handy, and also to find
an isomorphism is to find an inverse for a known homomorphism.]

(e) A combinatorial game (?):
Show the following proposition.

Proposition 2. dimC(V, q) ≤ 2dimV .

[Hint: You probably want to learn something about the basis of Clifford algebras (Theorem

2.4 of my note), and recall that 2n =
∑n

k=0

(
n

k

)
.]

(f) A weird involution (?):
Show the following proposition.

Proposition 3. The canonical involution is an automorphism (an isomorphic endomorphism) overC(V, q).

[Hint: Proposition 1 may be helpful. ]

Problem 3 (Henry). Suppose K = Q(i) where i :=
√
−1. Then consider the ideal a in OK (see

definition 2.5) given by
a := [i, 2 + i].

Find the quadratic form that belongs to a (see definition 2.16 and example 2.3).

Problem 4 (Francis). Do one of the following two problems:
(a) Prove that for all field k, rad(W(k)) = nil(W(k)).
(b) For k a formally real field, show that the Jacobson radical of W(k) is a prime ideal if and only

if k has a unique orderings. (Hint: rad(W(k)) =
⋂
MaxSpec(W(k)).)

Problem 5 (Luke). (a) Let λ = λ1 + λ2 + λ3, where the λi’s are generators of knF . Show that if
αn(λ) = 0 ∈ In/In+1, then λ = 0 ∈ knF . (Hint: Use Theorem 3.12.)

(b) For a given integer n, suppose that every element of knF can be expresed as a sum of three
generators. Show that αn is an isomorphism.

Problem 6 (Usman). Let f =
X2− 3

5
5X and k = R.

(a) Find the decomposition of f into monic polynomials. Without computation determine the
symmetric bilinear form that f is mapped to under the Bézout map.

(b) Compute the Bézout form for f by hand.

Problem 7 (Riley). Let q be a nonuniversal positive-definite integral quadratic form with truant t.
Show that

q′ := q ⊥ 〈t+ 1〉 ⊗ 〈1, 1, 1, 1〉 ⊥ 〈2t+ 1〉
represents all positive integers besides t. (Hint: Use Lagrange’s four square theorem). Give ex-
plicit examples of a positive-definite integral quadratic forms that represents all integers besides t
for t = 1, 2, 3.

Problem 8 (Xinling). Do one of the following two problems:
(a) The Hasse–Minkowski principle fails on more general functions. As a simple example, show

that
f(x) = (x2 − 2)(x2 − 17)(x2 − 34)

fails by separately discussing the cases p = 2, p = 17 and p 6= 2, 17.
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(b) Prove Theorem 3.2 by a proof similar to 3.1’s: let a, b ∈ Q×2 where a = 2kx and b = 2ly with
l, k ∈ Z and x, y ∈ Z×2 , then

(a, b)2 = (−1)
x−1
2

y−1
2

+l x
2−1
8

+k y2−1
8 .

Problem 9 (David). Consider the extension Q(α)/Q, where α has minimal polynomial g(t) = t3 −
9t − 9. It can be shown that Q(α) is the splitting field for g, so Q(α)/Q is a Galois extension of
degree 3. Use Theorem 17 to show that trK ∼= 〈1, 1, 1〉.
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