MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 9

Problem 1. Let k be a field. In this problem, call a relation < on k a *field order* if it is a total order which satisfies $a < b \implies a + c < b + c$ and $0 < a, 0 < b \implies 0 < ab$. Call a subset $P \subseteq k^{\times}$ satisfying $P + P \subseteq P$, $P \cdot P \subseteq P$, $P \cup (-P) = k^{\times}$ a *positive cone*. Show that there is a bijection between field orders on k and positive cones on k taking < to $P_{<} = \{\lambda \in k^{\times} \mid 0 < \lambda\}$.

Problem 2. Recall the Abelian group $(Q(k), \cdot)$ we introduced on p.31 of the course notes. Define a new operation \circ on Q(k) given by

$$(2\mathbb{Z}, \lambda \mathsf{k}^{\boxtimes}) \circ (2\mathbb{Z}, \mu \mathsf{k}^{\boxtimes}) = (2\mathbb{Z}, \mathsf{k}^{\boxtimes})$$
$$(2\mathbb{Z}, \lambda \mathsf{k}^{\boxtimes}) \circ (1 + 2\mathbb{Z}, \mu \mathsf{k}^{\boxtimes}) = (2\mathbb{Z}, \lambda \mathsf{k}^{\boxtimes})$$
$$(1 + 2\mathbb{Z}, \lambda \mathsf{k}^{\boxtimes}) \circ (1 + 2\mathbb{Z}, \mu \mathsf{k}^{\boxtimes}) = (1 + 2\mathbb{Z}, \lambda \mu \mathsf{k}^{\boxtimes}).$$

- (a) Check that $(Q(k), \cdot, \circ) \cong W(k)/I(k)^2$ as commutative rings. (We already proved in Proposition 13.1 that $Q(k) \cong W(k)$ as Abelian groups, so your task here is to show that \circ and \otimes are compatible via the isomorphism.)
- (b) Show that Q(k) is isomorphic to the ring $\mathbb{Z}[G]/J$ where $G = k^{\times}/k^{\boxtimes}$, $\mathbb{Z}[G]$ is the integral group ring for *G*, and *J* is the ideal of $\mathbb{Z}[G]$ generated by

$$[1] + [-1], \quad [1] + [\lambda\mu] - [\lambda] - [\mu]$$

for all $\lambda, \mu \in G$. (Here we are writing [g] for the basis element of $\mathbb{Z}[G]$ corresponding to $g \in G$.) *Bonus*: Show that the same statement holds with \mathbb{Z} replaced by $\mathbb{Z}/4\mathbb{Z}$.

Problem 3. (a) Prove that there is a unique ordering on \mathbb{Q} .

- (b) Find two distinct orderings on $\mathbb{Q}(\sqrt{2})$. *Bonus*: Show that there are only two orderings on $\mathbb{Q}(\sqrt{2})$. For the remainder of this problem, you may assume this fact.
- (c) Find a quadratic form that has signature 0 with respect to one of your orderings, and nonzero signature with respect to the other. Is this class torsion in $W(\mathbb{Q}(\sqrt{@}))$?
- (d) Find a torsion class in $W(\mathbb{Q}(\sqrt{2}))$ which is not defined over \mathbb{Q} .
- (e) Is there a nontorsion class in $W(\mathbb{Q})$ which becomes torsion in $W(\mathbb{Q}(\sqrt{2}))$?