MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 8

Problem 1. Suppose that $\langle \lambda_1, \ldots, \lambda_n \rangle \cong \langle \mu_1, \ldots, \mu_n \rangle$ over k with $\lambda_i, \mu_i \in k^{\times}$. Prove that

$$\prod_{i=1}^{n} (\langle \lambda_i \rangle - 1) = \prod_{i=1}^{n} (\langle \mu_i \rangle - 1)$$

in GW(k).

Problem 2. Show that if $I(k)^2 = 0$, then every regular binary form over k is universal.

Problem 3. Show that the cardinality of W(k) is finite if and only if -1 is a sum of squares in k and k^{\times}/k^{\boxtimes} is finite. (*Hint*: \mathcal{A}^{\bigcirc}).)

Problem 4. Let λ be an element of k[×] and let *q* be a regular quadratic form over k with dim q = 2m.

- (a) Show that $q \cong \langle \lambda \rangle \otimes q$ if and only if $q \cong q_1 \perp \cdots \perp q_m$, where each q_i is a binary form such that $q_i \cong \langle \lambda \rangle \otimes q_i$.
- (b) Suppose that $q \cong \langle -1 \rangle \otimes q$ and deduce that $q \otimes q$ is hyperbolic.
- (c) Conclude that $2q = 0 \in W(k)$ implies that $q^2 = 0 \in W(k)$.

Problem 5. Compute the image of $q = x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n$ in GW(k) and W(k) for $k = \mathbb{C}$, \mathbb{R} , and \mathbb{F}_p , p > 2 prime.