MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 5

Problem 1 (Another chance at Week 4's Problem 5). Show that a binary form $\langle 1, -a \rangle$ over \mathbb{Q} is universal if and only if $a \in \mathbb{Q}^{\boxtimes}$. *Hint*: First show (by the First Representation Criterion) that the claim holds over any field k when the universality hypothesis is replaced with isotropicity. Now show that a regular form is isotropic over \mathbb{Q} if and only if it is universal. (Don't be afraid of prime numbers.)

Problem 2. Let k be a field and suppose $F_i \subseteq k$ is a subfield for $i \in I$. Define $F = \bigcap_{i \in I} F_i$. Show that the natural homomorphism $F^{\times}/F^{\boxtimes} \to \prod_{i \in I} F_i^{\times}/F_i^{\boxtimes}$ is an injection. Conclude that if $|I| < \infty$ and $[F_i^{\times} : F_i^{\boxtimes}] < \infty$ for all $i \in I$, then $[F^{\times} : F^{\boxtimes}] < \infty$.

Problem 3. In a hyperbolic space, a maximal totally isotropic subspace is called a *Lagrangian*. Show that every hyperbolic space is the orthogonal sum of two Lagrangians. Draw a picture of such a Lagrangian decomposition of $h = \langle 1, -1 \rangle$ over \mathbb{R} .

Problem 4. Use Witt's Decomposition Theorem to prove Sylvester's Law of Inertia:

Fix $n \ge 1$. For every *n*-ary regular quadratic form *q* over \mathbb{R} , there are unique integers

 n_+ and n_- such that $q \cong n_+ \langle 1 \rangle \perp n_- \langle -1 \rangle$.

In particular, the equivalence class of every regular quadratic form over \mathbb{R} is determined by its dimension ($n = n_+ + n_-$) and signature ($n_+ - n_-$).

Problem 5. Exhibit a chain equivalence between (2,3,6) and (1,1,1) over \mathbb{Q} . *Bonus*: Show that the equation $2x^2 + 3y^2 + 6z^2 = 7$ cannot be solved over \mathbb{Q} .