MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 3

Problem 1. Let (V, q) be a quadratic space with associated symmetric bilinear form *B*. Prove that the following statements hold for all $x, y \in V$, and furthermore interpret each label.

(a) If B(x,y) = 0, then q(x + y) = q(x) + q(y) [Pythagorean theorem for a right triangle].

(b) q(x+y) + q(x-y) = 2q(x) + 2q(y) [Pythagorean theorem for a parallelogram].

(c) If q(x) = q(y), then B(x + y, x - y) = 0 [orthogonality of diagonals of a rhombus].

Problem 2. Let *V* be a k-vector space and let $\beta : V \times V \to k$ be a (not necessarily symmetric) bilinear form. Prove that $\beta = \sigma + \tau$ where σ is a symmetric bilinear form and τ is a skew-symmetric bilinear form. (Skew-symmetry says that $\tau(y, x) = -\tau(x, y)$ for all $x, y \in V$.)

Problem 3. For a k-vector space *V*, let Bil *V* denote the set of *all* (not necessarily symmetric) bilinear forms $\beta : V \times V \rightarrow k$.

- (a) Generalize the "right vertical side of the quadratic square" to show that Bil *V* is in bijective correspondence with $M_{n \times n}(k)$.
- (b) Let *A* be the matrix associated with $\beta \in \text{Bil } V$. Show that β is symmetric if and only if *A* is symmetric, and show that β is skew-symmetric if and only if $A = -A^{\top}$ (recalling that $\operatorname{char} k \neq 2$).

Problem 4. Prove that the quadratic form $ax^2 - ay^2$ is equivalent to $x^2 - y^2$ for all $a \in k^{\times}$.

Problem 5. Let (V, B) be a symmetric bilinear form with associated quadratic space (V, q). Prove that (V, B) is regular if and only if the following condition holds:

If $y \in V$ and q(x + y) = q(x) + q(y) for all $x \in V$, then y = 0.

Problem 6. For $a, b \in k^{\times}$, show that $b \in D(x^2 + ay^2)$ if and only if $bx^2 + aby^2$ is equivalent to $x^2 + ay^2$.