MATH 412: TOPICS IN ALGEBRA HOMEWORK DUE FRIDAY WEEK 2

Remark 1. Make sure to review the "Homework" portion of the syllabus before writing up your solutions!

Problem 1. Suppose that k is a field and $H \leq k^{\times}$ is a finite subgroup of the multiplicative group $k^{\times} = k \setminus \{0\}$. Prove that *H* is cyclic.

Problem 2. Suppose that *U*, *V*, and *W* are k-vector spaces. Prove that

$$\operatorname{Hom}_{\mathsf{k}}(U \oplus V, W) \cong \operatorname{Hom}_{\mathsf{k}}(U, W) \oplus \operatorname{Hom}_{\mathsf{k}}(V, W)$$

as vector spaces by constructing a natural isomorphism. What can you conclude about $(U \oplus V)^*$ versus $U^* \oplus V^*$?

Problem 3. Let *V* and *W* be k-vector spaces.

- (a) Prove that $\operatorname{Hom}_{\mathsf{k}}(\mathsf{k}, V) \cong V$.
- (b) Suppose additionally that *V* and *W* are finite-dimensional. Determine the dimension of $Hom_k(V, W)$ in terms of dim *V* and dim *W*.

Problem 4. Let *V* be a vector space with ordered basis v_1, \ldots, v_n , let *W* be a vector space with ordered basis w_1, \ldots, w_m , and suppose $f: V \to W$ is a linear transformation with matrix *A* with respect to these bases. Show that the dual transformation $f^*: W^* \to V^*$ has matrix A^{\top} with respect to the ordered dual bases w_1^*, \ldots, w_m^* and v_1^*, \ldots, v_n^* .

Problem 5. Suppose that *V* and *W* are k-vector spaces. Prove that the linear transformation

 $\operatorname{Hom}_{\mathsf{k}}(V,W) \xrightarrow{()^*} \operatorname{Hom}_{\mathsf{k}}(W^*,V^*)$

is injective. Use Problem 3(b) to conclude that this map is an isomorphism $\operatorname{Hom}_{\mathsf{k}}(V, W) \cong \operatorname{Hom}_{\mathsf{k}}(W^*, V^*)$ when *V* and *W* are finite-dimensional.

Problem 6. Observe that the square of any integer is congruent to 0 or 1 modulo 4.

(a) Use the above fact to deduce that if *a* is a sum of two squares of integers, then $a \not\equiv 3 \pmod{4}$.

(b) Use congruences modulo 4 and 3 to deduce that there are no integer solutions to the equation $x^2 + y^2 = 21$.

(A theorem from elementary number theory says that a positive integer is a sum of two squares if and only if its prime decomposition contains no prime congruent to 3 modulo 4 raised to an odd power. You may not invoke this theorem in your proof of (b)!)