MATH 342: TOPOLOGY FUNCTOR EXAMPLES

As a supplement to our functor lecture, consider the following examples.
Example 1. Fix a field k. There is a free functor F : Set \rightarrow Vect $_{k}$ taking a set S to

$$
F S=\bigoplus_{S} F .
$$

Here $\bigoplus_{S} F$ is the vector space of functions $f: S \rightarrow F$ with $f(s) \neq 0$ for only finitely many $s \in S$. The linear structure is given by pointwise addition and scaling.

Note that a basis for $\bigoplus_{S} F$ is given by $\left\{\chi_{s} \mid s \in S\right\}$, the set of characteristic functions of singleton subsets of S. As such, every linear map out of $\bigoplus_{S} F$ is specified by its value on $\chi_{s}, s \in S$, extended linearly.

The above observation allows us to define $F f$ for $f: S \rightarrow T$ a function. Indeed, we define $(F f)\left(\chi_{s}\right):=\chi_{f(s)}$. It is clear that $F \mathrm{id}_{S}=\operatorname{id}_{F S}$, and for composable functions $S \xrightarrow{f} T \xrightarrow{g} U$, we have

$$
(F g f)\left(\chi_{s}\right)=\chi_{g(f(s))}=(F g)\left(\chi_{f(s)}\right)=(F g)(F f)\left(\chi_{s}\right) .
$$

This shows that F is a functor.
Note that $F S=\bigoplus_{S} F$ satisfies a universal property. Consider the function $i_{S}: S \rightarrow \bigoplus_{S} F$ given by $i_{S}(s)=\chi_{s}$. Then for V any k-vector space and f any function $f: S \rightarrow V$, there exists a unique linear transformation $\bigoplus_{S} F \rightarrow V$ making the diagram

commute. Indeed, $\bigoplus_{S} F \rightarrow V$ is given by $\chi_{s} \mapsto f(s)$ (extended linearly).
It is in the fact the case that the forgetful functor $U:$ Vect $_{\mathrm{k}} \rightarrow$ Set and F fit into the so-called free-forgetful adjunction. This says that

$$
\operatorname{Vect}_{\mathrm{k}}(F S, V) \cong \operatorname{Set}(S, U V)
$$

naturally. (The 'natural' part is a technical condition saying that we are actually dealing with a natural isomorphism of functors, but I won't unpack that here.) This essentially says that linear maps out of $F S$ are in bijection with set maps out of S, and is another interpretation of the universal property of $F S$.
Example 2. The \#remote Slack channel thought about the following example. Let Op ${ }_{*}$ denote the category with objects (U, x) where U is an open subset of some Euclidean space \mathbb{R}^{k} and $x \in U$, and morphisms $f:(U, x) \rightarrow(V, y)$ given by differentiable functions $f: U \rightarrow V$ such that $f(x)=y$. I claim that the derivative is a functor $D: \mathrm{Op}_{*} \rightarrow \mathrm{Vect}_{\mathbb{R}}$ defined as follows:

Given an object (U, x) of $O p_{*}$ where U is an open subset of \mathbb{R}^{n}, define $D(U, x)$ to be \mathbb{R}^{k}. If $f:(U, x) \rightarrow(V, y)$ is a morphism in Op_{*} and $V \subseteq \mathbb{R}^{m}$, define $D f$ to be $D_{x} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be the derivative of f at x (considered as a linear transformation).

We now check functoriality. Since the identity map is linear, it is clear that $D_{x} \mathrm{id} d_{U, x}=\mathrm{id}_{\mathbb{R}^{m}}$. Now suppose that $(U, x) \xrightarrow{f}(V, y) \xrightarrow{g}(W, w)$ are composable morphisms in Op_{*}. Then by the
multivariable chain rule,

$$
D_{x}(g f)=D_{y}(g) D_{x}(f) .
$$

The upshot is that the chain rule is essential in identifying the multivariable derivative as a functorial construction!

Now some readers may prefer to think in coordinates and replace $D_{x} f$ with the Jacobian matrix $J f(x)$ of f at x. This is the $m \times n$ matrix

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)_{i j}
$$

of partial derivatives of f at x. We may consider J as a functor $\mathrm{Op}_{*} \rightarrow$ Mat taking $\left(U \subseteq \mathbb{R}^{n}, x\right)$ to n and $f:(U, x) \rightarrow(V, y)$ to the Jacobian matrix $J f(x)$. The chain rule again verifies that this is a functor.

