
MATH 342: TOPOLOGY
FUNCTOR EXAMPLES

As a supplement to our functor lecture, consider the following examples.

Example 1. Fix a field k. There is a free functor F : Set→ Vectk taking a set S to

FS =
⊕
S

F.

Here
⊕

S F is the vector space of functions f : S → F with f(s) 6= 0 for only finitely many s ∈ S.
The linear structure is given by pointwise addition and scaling.

Note that a basis for
⊕

S F is given by {χs | s ∈ S}, the set of characteristic functions of singleton
subsets of S. As such, every linear map out of

⊕
S F is specified by its value on χs, s ∈ S, extended

linearly.
The above observation allows us to define Ff for f : S → T a function. Indeed, we define

(Ff)(χs) := χf(s). It is clear that F idS = idFS , and for composable functions S
f−→ T

g−→ U , we
have

(Fgf)(χs) = χg(f(s)) = (Fg)(χf(s)) = (Fg)(Ff)(χs).

This shows that F is a functor.
Note that FS =

⊕
S F satisfies a universal property. Consider the function iS : S →

⊕
S F

given by iS(s) = χs. Then for V any k-vector space and f any function f : S → V , there exists a
unique linear transformation

⊕
S F → V making the diagram

S
⊕

S F

V

is

f
∃!

commute. Indeed,
⊕

S F → V is given by χs 7→ f(s) (extended linearly).
It is in the fact the case that the forgetful functor U : Vectk → Set and F fit into the so-called

free-forgetful adjunction. This says that

Vectk(FS, V ) ∼= Set(S,UV )

naturally. (The ‘natural’ part is a technical condition saying that we are actually dealing with a nat-
ural isomorphism of functors, but I won’t unpack that here.) This essentially says that linear maps
out of FS are in bijection with set maps out of S, and is another interpretation of the universal
property of FS.

Example 2. The #remote Slack channel thought about the following example. Let Op∗ denote the
category with objects (U, x) where U is an open subset of some Euclidean space Rk and x ∈ U ,
and morphisms f : (U, x)→ (V, y) given by differentiable functions f : U → V such that f(x) = y.
I claim that the derivative is a functor D : Op∗ → VectR defined as follows:

Given an object (U, x) of Op∗ where U is an open subset of Rn, define D(U, x) to be Rk. If
f : (U, x) → (V, y) is a morphism in Op∗ and V ⊆ Rm, define Df to be Dxf : Rn → Rm to be the
derivative of f at x (considered as a linear transformation).

We now check functoriality. Since the identity map is linear, it is clear that Dx idU,x = idRm .

Now suppose that (U, x)
f−→ (V, y)

g−→ (W,w) are composable morphisms in Op∗. Then by the
1



multivariable chain rule,
Dx(gf) = Dy(g)Dx(f).

The upshot is that the chain rule is essential in identifying the multivariable derivative as a func-
torial construction!

Now some readers may prefer to think in coordinates and replaceDxf with the Jacobian matrix
Jf(x) of f at x. This is the m× n matrix (

∂fi
∂xj

(x)

)
ij

of partial derivatives of f at x. We may consider J as a functor Op∗ → Mat taking (U ⊆ Rn, x) to
n and f : (U, x) → (V, y) to the Jacobian matrix Jf(x). The chain rule again verifies that this is a
functor.
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