Day 33
Learning Goals

- Seifert-van Kampen for Π_{1}
- Seifert-van Kampen for π_{1}

Pushouts in G_{p}
Examples
Recall pushout in Top:

$$
\begin{aligned}
& A \stackrel{f}{r} B \\
& g \downarrow \\
& C \rightarrow B 山 C / f(a) \sim g(a)
\end{aligned}
$$

If $X=U \cup V$ for open sets $U, V \subseteq X$, then
(7)

The $\left[S v K\right.$ for $\left.\pi_{1}\right]$ Supposes $X=U \cup V$ for open sets U, V. Then applying Π_{1} to yields a pushout diagram in Gid, the category of groupoids:

Pf Idea Given a commutative tiagram of groupsids
(t)
 define

$$
\Phi x= \begin{cases}f(x) & \text { if } x \in U \\ g(x) & \text { if } x \in V\end{cases}
$$ on objects

and given $[\gamma] \in \Pi_{1} X(x, y)$ to the following:

I.e. use compactness of I to urito $[\gamma]$ as a concatenation of paths $\left[\gamma_{n} \ldots \gamma_{1}\right]$ with $\gamma_{i}(I) \subseteq U$ or V for all. Let $f_{i}=\left\{\begin{array}{ll}f & \text { if } \gamma_{i}(I) \subseteq U \\ g & \text { if } \gamma_{i}(I) \subseteq V\end{array}\right.$ and then define $\Phi[\gamma]:=f_{n}\left[\gamma_{n}\right] \cdot f_{n-1}\left[\gamma_{n-1}\right] \cdots f_{1}\left[\gamma_{1}\right]$.
It remains to show that Φ ir well-defined and is the unique functor making the diagram commute. For well $-d \cdot f^{\prime} n$, suppose $\gamma^{\prime}=\gamma$ and choose a htpy
$h: \gamma^{\prime} \Rightarrow \gamma^{\prime}$. Use compactness to subdivide $I \times I \gamma$ $h: \gamma^{\prime} \Rightarrow \gamma$. Use compactness to subdivide $I \times I \gamma$
into rectangles with images completely in U or V :

This supplies homotopits b/w $\gamma_{i}^{\prime}, \gamma_{i}$ for each i whence $f_{i}\left[\gamma_{i}^{\prime}\right]=f_{i}\left[\gamma_{i}\right] \Longrightarrow$ well-difined.
I makes the diagram commute b/c fig agree on pts + paths in $U \cap V$. The form of Φ is mandated by the commutativity of the outer triangles in (t).
The $\left[S v K\right.$ for $\left.\pi_{1}\right]$ Suppose $X=U \cup V$ for $U, V \subseteq X$ open and suppose $x_{0} \in U \cap V$. If $U \cap V$ is path connected, then

$$
\begin{gathered}
\pi_{1}\left(U \cap V, x_{0}\right) \underset{\Gamma}{ } \quad \pi_{1}\left(U, x_{0}\right) \\
\downarrow \\
\pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
\end{gathered}
$$

is a pushout in Gp.
Pf Idea First replace U, V, X with $U^{\prime}, V^{\prime}, X^{\prime}$, the path components of x_{0} in each spare.
These have the same $\pi_{1}\left(-, x_{0}\right)$. The diagram (f) restricts to a pushout the connected component of x_{0} and - since $U \cap V$ is path connertud the inclusions $\pi_{1}\left(U \cap V, x_{0}\right) \subseteq \Pi_{1}(U \cap V)$

$$
\begin{aligned}
& \pi_{1}\left(U^{\prime}, x_{0}\right) \subseteq \Pi_{1} U^{\prime} \\
& \pi_{1}\left(V^{\prime}, x_{0}\right) \subseteq \Pi_{1} V^{\prime} \\
& \pi_{1}\left(X^{\prime}, x_{0}\right) \subseteq \Pi_{1} X^{\prime}
\end{aligned}
$$

are equivalences of categories. By abstract nonsense, the corresponding $\pi_{1}\left(-, x_{0}\right)$ diagram is a pashout in $G p$.
Note The theorem (and proof) fail for USN not path conn'd. Consider

Pushouts in Gp.

amalgamated free product
for K, G, H groups, fig homomorphisms,
$G * H=$ free product of G, H
$=$ coproduct in Gp,
$N=$ normal surgy of $G * H$ gen'd by rains $f(k)=g(k) \quad \forall k \in K$ i.e. by $f(k) g(k)^{-1} \forall k \in K$.

Examples north south pole
(1) $X=S^{2}, \quad U=S^{2}-N \cong D^{2} \simeq *$

$$
\begin{aligned}
& V=S^{2}, S \cong D^{2} \simeq * \\
& U \cap V=S^{2},\{N, S\} \cong D^{2} \backslash O \simeq S^{1}
\end{aligned}
$$

By Sub,

(Think about the geometric meaning of this. Can you
give a geometric proof?)
(2)

$$
\begin{aligned}
& x=5^{\prime} \vee 5^{\prime} \\
& u \simeq V \simeq S^{\prime} \\
& U \cap V=x \simeq * \\
& \text { By uK, }
\end{aligned}
$$

This is the free group on two generators.
(3)

$$
\begin{aligned}
& X=S^{\prime} \times S^{\prime} \\
& \begin{aligned}
V & =X \backslash\{p\} \\
& \simeq S^{\prime} \vee S^{\prime} \\
U \cap V & =\operatorname{dork} \backslash\{p\} \\
& \simeq S^{\prime}
\end{aligned}
\end{aligned}
$$

$U=$ small open dist containing p, to

By SuN, $\gamma \mathbb{Z}\{\gamma\} \longrightarrow e$

$$
\begin{aligned}
& \alpha \beta \alpha^{-1} \beta^{-1} \mathbb{Z}\{\alpha\} * \mathbb{Z}\{\beta\} \longrightarrow \pi_{1}\left(X, t_{0}\right) \\
\Rightarrow & \pi_{1}\left(X, t_{0}\right) \cong F \underbrace{(\alpha, \beta) /\langle\alpha \beta}_{\alpha \beta=\beta \alpha} \alpha^{-1} \beta^{-1}\rangle
\end{aligned}
$$

