Day 32
Learning Goals

Defn_For $X:\left(X, x_{0}\right)$ based, the based path pace of X is $P X:=\operatorname{Top}_{*}\left((I, 0),\left(X, x_{0}\right)\right)$ with compact open topology.

Give $P X$ base point cons $x_{x_{0}}$
Define $\begin{aligned} p: P X & \longrightarrow X \\ \gamma & \longmapsto \gamma(1)\end{aligned}$. Then $p^{-1\left|x_{0}\right|=\Omega X .}$
This map is based (cons $x_{0} \rightarrow x_{0}$) and a fibration:

$$
\begin{aligned}
& \begin{array}{l}
z \longmapsto g(z)=\text { path in } X \text { ending at } \\
z \longrightarrow P X \quad h(z, 0)
\end{array} \\
& \begin{array}{lll}
z \xrightarrow{\sigma} p x \quad h(z, 0) \\
i \int_{i}, \cdots \tilde{n}^{n} d p & \text { starting pt of } h(z,-)
\end{array} \\
& Z \times I \xrightarrow[h]{ } X
\end{aligned}
$$

Define $\tilde{h}(z, t):=$ path in X with param'n

$$
s \longmapsto \begin{cases}g(z)(s(1+1)) & \text { if } 0 \leq s \leq \frac{1}{1+t} \\ h(z, s(1+t)-1) & \text { if } \frac{1}{1+i} \leq s \leq 1\end{cases}
$$

Thin \tilde{h} is a ruparametrization of $h(z,-) \cdot g(z)$ and (check) $\cdot \tilde{h}$ is based \tilde{h} lifts h.

Prop $P X \simeq *$

Define $h: P X \times I \rightarrow P X$ $(\gamma, t) \mapsto \frac{5}{J}$
Thin $h(-, 0)=i d_{p x}$, $\gamma(s+(1-s) t)$

$$
\begin{aligned}
& h(-, 1)=\text { cons }_{(1)}, \\
& h\left(\text { cons }_{x_{0}}, t\right)=\text { cons }_{x_{0}}
\end{aligned}
$$

Cig_ Th map $\begin{aligned} p: \mathbb{R} & \longrightarrow S^{\prime} \\ t & \longrightarrow e^{2 \pi i t}\end{aligned}$ is a fibration with fiber \mathbb{Z}.

Consider

Take an open cover U of S^{\prime} sit. for all $U \in U$,
$p^{-1} U=\{$ disjoint opens in R, each $\cong U\}$
Since h is cts, $h^{-1} U$ is an open cover of $X \times I$. For each $\times \times X$ choose finite subcover $V_{x} \subseteq h^{-1} U$ of $\{\times\} \times I$.

S Inductively patch together lift \tilde{h} om each V_{x}

Works on overlaps $b / c p$ is a local homeomorphism.

Thus get g_{x} lifting h on $U V_{x} v(X \times\{0\})$.
Now chuck - again with thu fact that p is a local homeomorphism - that g_{x}, g_{y} agree on overlap. Thus

$$
\tilde{h}(x, t)=g_{x}(x, t)
$$

is welt-defined and lifts h.
Goal

If we succeed, $\Omega S^{1} \simeq \mathbb{Z} \Longrightarrow$ as groups!

$$
\pi_{1} S^{\prime} \cong \pi_{0} \nabla S^{\prime} \cong \pi_{0} \mathbb{Z} \cong \mathbb{Z}
$$

The suppose p q fibins and $E \xrightarrow{f} D$ comnutus.
If f is a htpy equiv, then f induces a htpy equiv b/w fibers.

Pf The idea is to produce a lutpy inverse to f that pruservas fibers. Thun f will restrict to $p^{-1} b=q^{-1} b$.

By assumption, f has a Leper inverse f^{\prime} hence $\exists h^{\prime}:{f f^{\prime}}^{\Rightarrow} \operatorname{id}_{D}$

Check that $g:=\tilde{h}(-, 1)$ pruesves fibers and is a happy inverse to f.
(Omitting some details regarding homutopites preserving fibers.)
Cor $\pi_{n} S^{\prime} \cong \begin{cases}\text { trivial } & n \neq 1 \\ \mathbb{Z} & n=1\end{cases}$
If S^{\prime} is conn'd and we alriady argued

$$
\begin{aligned}
& \pi_{1} S^{\prime} \leqq \mathbb{Z} . \text { For } n \geqslant 2, \pi_{n} s^{\prime} \cong \pi_{n-1} \Omega s^{\prime} \cong \pi_{n-1} \mathbb{Z} \\
&=\left[S^{n-1}, \mathbb{Z}\right] .
\end{aligned}
$$

Since 5^{n-1} is conn'd for $n>1$, all based maps to \mathbb{Z} are trivial.

Aside: Thu If $n \geqslant 2$, then $\pi_{n} X$ is Abelian.
Sketch for $n=2$
π, arlor Tricks (corollaries of $\pi, 5^{\prime} \cong \mathbb{Z}$-see 6.6.3)

- Brouwers fixed pt the for D^{2}
- Person-Frobenius: every 3×3 matrix with positive entries has a positive eigenvalue
- Fundamental The of Algebra: every nonconstant complex polynomial has a root in \mathbb{C}.

