Day 31
Warning goals

- Define (colfibrations via lifting/uxtension problems
- Mapping path space and mapping cylinder

Everything in the category Top today.
Write $: X \rightarrow X \times I$ for $x \mapsto(x, 0)$.
Defy A map $p: E \longrightarrow B$ is a fibration when $\forall g, h$
 $X \times I \vec{h}{ }^{\stackrel{\rightharpoonup}{r}}$
$\begin{array}{ll}\text { sit. } & X \xrightarrow{g} E \\ & \\ & \downarrow \times I \xrightarrow[h]{\tilde{h}} \nmid P\end{array}$
commenter.

Wa say that \tilde{h} lifts the homatopy h.

Defon $A \operatorname{map}: A \longrightarrow Y$ is a cofibration when $\forall h, g$ making $A \xrightarrow{h} X^{I} \gamma$ commute, $\exists \tilde{h}: Y \rightarrow X^{I}$

$$
\begin{array}{lll}
i \downarrow & & \downarrow \\
4 \\
y
\end{array}
$$

sot.
$A \xrightarrow{h} X^{I}$ commutes. We soy that
i),$\frac{h^{x}}{l}$ le \tilde{h} extends the homotopy h. $4 \xrightarrow[g]{ } X$

Slogans - Fibrations $E \rightarrow B$ ard maps sit. if a homotopy in B lifts to E at time O then it lifts completely

- Cofibrations $A \rightarrow Y$ are mess sit. if a honofopy from A extends to Y at time 0 then it extends completely.

Them Every cts $f: x \rightarrow y$ factors as $x \xrightarrow{g} E$ and X
 $f=g^{\prime} i$

In fact, we can be explicit with these constructions.
Dufn the mapping path space P_{f} of f is the palback

Explicitly, $p_{f}=\left\{(x, \gamma) \in X \times Y^{I} \mid f(x)=\gamma(1)\right\}$.
Prop $P_{f} \rightleftarrows X$ are hanotopy inverses
and the composite $P_{f} \longrightarrow Y^{I} \longrightarrow Y$ is a fibration $(x, \gamma) \longmapsto \gamma \longmapsto \gamma(1)$

Pf Ideas $\cdot P_{f} \longrightarrow P_{f}$

$$
(x, y) \longmapsto\left(x, \text { cons }_{y_{11} 1}\right)
$$

homotopic to id P_{f} by "ruling each path into its endpoint."
The composite $X \rightarrow X$ is id x on the nose.

- For a lifting problem

Define $\tilde{h}(z, t)=" g(z)$ modified so that it path portion just goes $\gamma(t) \rightsquigarrow \gamma(1)$
Their works!
Def n The mapping cylinder of $f: X \rightarrow Y$ is the pushout

Explicitly,

$$
M_{f}=Y \Perp(X \times I) /(x, 0) \sim f(x) .
$$

Prop $\begin{aligned} x \longrightarrow M_{f} \\ x \longmapsto[(k, 1)]\end{aligned}$ is a cofibration and $y \longrightarrow M_{f}$ is a hutpy equiv.

PI Moral exc. \square
Taken together, these props prove the theorem

