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Learning goals
. Define (co) fibration via lifting/extension
problems

. Mapping path space and mapping cylinder

Everything in the category Top today .
Write i : ✗→ ✗ ✗ I for x-slx.co)

.
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Detn A map i. A→ Y is a •fibration when

V-h.ge making A →h ✗It commute
,
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.co/-ibrationsA-Yaremapss.t. if a homotopy
From A extends to Y at time 0 then itextends

completely .

Thm_ Every cts f:X→ Y factors as ✗→ÉE
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In fact, we can be explicit with these constructions .

D-I the mapping path space Pf off is the

pullback pf → ✗
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Explicitly, pf = { (×,8) e ✗ ✗ y
' / flx) : 8111}
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(x, 8)→ x

PI
pg ✗ are homotopy inverses

(x, const#×

and the composite Pf → YI→ Y is a fibration
(x
,8)↳ r→ V41

tf ideas • Pf → Pf
(x;D→ (x, constr ,, )

homotopic to idpf by
"

reeling each path into
its endpoint ?
the composite ✗→ X is idx on the nose .



• For a lifting problem
z Ip ix.8)

⇒ f -

it .int t
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Define Ñlz, t ) =
"

glz) modified so that its path
portion justgoes Htm 841
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This works !

Defn_ The mapping cylinder off :X→4 is the

pushcart ✗1- Cool
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Explicitly,
Mf = YI 11-1×+1%0) ~ fix .
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Prof X- Mf is a cofibration and Y→ Mp
✗mix, it] yrs (g)

is a htpy equiv .

tf Moral exc .

Taken together, these props prove the theorem

✗ =→Pf
wfib µb
Mf .


