Day 30
Learning Goals

- Category of pointed top spaces $T_{o p}$

Smash-hom adjunction in Top*

- Suspension and loops

Defn The category of pointed spaces $T_{o p_{*}}$ has objects pairs (X, x) for X a top space, $x \in X$ and more phisms $f:(x, x) \rightarrow(4, y)$ cts f_{n} $f: x \rightarrow Y$ sit. $f(x)=y$ - call such an f based. A homotopy in Top is a map

$$
H: I \times X \longrightarrow Y \quad \text { (basepoints } x_{0} \in X, y_{0} \in Y \text {) }
$$

rit. $h\left(t, x_{0}\right)=y_{0} \quad \forall t \in I$.

$$
\begin{aligned}
& x=\left(x, x_{0}\right) \\
& y=\left(y, y_{0}\right)
\end{aligned}
$$

The associated htpy catugory in $h T_{\text {op* }}$ and we denote $h T_{o p_{4}}(x, y)$ by $[x, y]_{*}$ or $[x, y]$.

We have $\pi_{1}\left(X, x_{0}\right)=\left[(S, 1),\left(X, x_{0}\right)\right]$

Give $S^{n} \subseteq \mathbb{R}^{n+1}$ th basepsint $e_{1}=(1,0,0, \ldots, 0)$.
The functor $h T_{p_{*}}\left(S^{n},-\right)$: $T_{o p_{*}} \rightarrow$ Set is called the $n \cdot$ th homotopy set $x^{+}\left(x_{1}\right) \mapsto t$ actually $\left\{S^{n}, x\right]$ for $n \geq 1$, Abelian group for $n \geq 2$).

$$
\begin{aligned}
& \mathbb{p}^{1 / 2} \quad n=0 \quad \pi_{0}(X, x) \cong \text { path components of } X \\
& {[f] \longmapsto \text { path copt of } X \text { containing } f(-1)} \\
& n=1 \quad \pi_{1}(X, x)=\text { fundamental group of } X \text { based } \\
& \text { at } x \\
& S=\{+1\} n=2 \pi_{2}(x, x) \text { second homstopy go of } X \text { based } \\
& \left(x, x_{0}\right)^{x_{0}} ? \\
& \text { at } x \\
& \text { "cavities" in } X \text { ? } \\
& \stackrel{\hat{y}}{ } \pi_{3}\left(s^{2}\right) \cong \mathbb{Z}
\end{aligned}
$$

Have an adjunction

$$
\begin{aligned}
()_{+}: T_{o p} & \longmapsto T_{\text {pp }}: U \\
x & \longmapsto(X, x) \\
y & \longmapsto Y_{+}:\left(Y \Perp\{k \phi, *) \frac{\sum_{*}}{y_{+}}\right.
\end{aligned}
$$

Since U is a right adjoint, it preserves limits, so limits of diagrams of pointed spaces have the same underlying space as the limit of the corresponding diegram in Top.
Gig. $(x, x) \times(y, y)=(x \times y,(x, y))$,
Colimits might be different!

Defy The wedge sum of pred spaces is

$$
\begin{aligned}
& (x, x) \vee(y, y):=x \Perp Y / x \sim y \\
& \text { ? }
\end{aligned}
$$

Defn The smash product of pod spaces is

$$
x \times y:=x \times y / x \vee y
$$

where XvY is identified with

$$
\left(\left\{x_{0}\right\} \times y\right) \cup\left(X \times\left\{y_{0}\right\}\right) .
$$

The for X locally compact Hausdorff, the functors $x_{n-},()^{x}$ form an adjunction

$$
X_{1}-: T_{o p_{*}} \rightleftarrows T_{o p_{*}}:()^{x}
$$

(Here $\left(z, z_{0}\right)^{\left(x, x_{0}\right)}$ consists of based maps $x \rightarrow z$ and is pintide by the constant function, a
If idea Descend from product-hom adjunction in Top.

$$
\begin{aligned}
f: y \rightarrow Z^{x} \text { band } & \Rightarrow f\left(y_{0}\right)=\text { cons }_{z_{0}} . \\
& \Rightarrow\left[f\left(y_{0}\right)\right](x)=z_{0} \quad \forall x \in X
\end{aligned}
$$

$f(y)$ based $\forall y \in Y \Rightarrow(f(y)]\left(x_{0}\right)=z_{0} \quad \forall y \in Y$.
Thus $\hat{f}: x \times y \rightarrow z$ is constant on $(\{x\} x y,) \cup\left(x \times\left\{y_{0}\right\}\right)$.

Defer The reduced cons and reduced suspension of $\left(X, x_{0}\right)$ are

$$
C X:=X \wedge I \text { and }\left[X:=X \wedge S^{\prime}\right.
$$

pred by 1

Let X^{*} denote the 1-point compactification of a space X, pad by $*=\infty$.
Thu $x^{*} \wedge y^{*} \cong(x \times y)^{*}$ 佒 $H W$.
Cor $S^{m} \wedge S^{n} \cong S^{m+n}$ and $\Sigma S^{n} \cong S^{n+1}$.
Pf Cor $S^{n}=\left(\mathbb{R}^{n}\right)^{*}$ and $\mathbb{R}^{m} \times \mathbb{R}^{n}=\mathbb{R}^{m+n}$.

The based loops functor is $\Omega=()^{5^{\prime}}$. Since $\Sigma \cong S^{\prime} \wedge$ - wa get the suspension-loop adjunction

$$
\Sigma: T_{o p_{*}} \rightleftarrows T_{o p_{*}}: \Omega
$$

This descends to $h T_{0 p_{+}}$so that $\Omega x=x^{s^{\prime}}$

$$
[[x, y] \cong[x, \Omega y] .
$$

In particular,

$$
\begin{aligned}
\pi_{n+1} x & =\left[5^{n+1}, x\right] \\
& \cong\left[\Sigma s^{n}, x\right] \\
& \cong\left[5^{n}, \Omega x\right] \\
& =\pi_{n} \Omega x .
\end{aligned}
$$

Cor $\pi_{n} X$ is a group for $n \geqslant 1$.
if Induction $+\pi_{n+1} X \cong \pi_{n} \Omega X$.
Note $\pi_{n} X$ is Abelian for $n \geqslant 2$ (not necessarily for $n=1!$)

One-pt compactification of x :

$$
X^{t}=X \Perp\{\infty\} \text { as a set }
$$

opems in X^{*} ars :
(1) opens in X
(2) complaments of closed compact subsets of X

$$
X^{*}, k=(x-k) \cup\{\infty\}
$$

for $K \subseteq X$ compect closed.
a

$$
\mathbb{R}^{2}=X
$$

$$
\mathbb{C}^{*}=\text { Riemann spherse }
$$

$$
\cong \mathbb{C} P^{\prime}
$$

\mathbb{C}

