Day 30

Learning Goals

· Category of pointed top spaces Topy · Smash - hom adjunction in Top* · Suspension and loops

Deta The category of pointed spaces Topy has objects pairs (X, x) for X a top space, x eX and morphisms f: (X, x) - (Y, y) ets fors $f: X \rightarrow Y$ s.t. f(x) = y — call such an f based. A homotopy in Topy is a map H: I × X -> Y (basepoints x eX, y o e Y) r.t. hlt, xo)= yo HEEI $X = (X, \times_{o})$ H Goy Y = (Y, Y.)

The associated htpy category in htpp, and we denote htpp: (X, Y) by IX, Y], or [X, Y].

We have π , $(X, \times,) = [(5', 1), (X, \times,)]$ f d X Give 5" = R"+1 the basepoint e,= (1,0,0,...,0). The functor hTopx (S", -): Top -> Set is called the noth homotopy set lactually group for n>1, Abelian group for n>2). at S=1=1 == Tr(X, x) = second homotopy go of X based (X,x)^xo²; caritius in X² $\mathfrak{P}_{\mathfrak{T}_{2}}(S^{2})\cong\mathbb{Z}$

Have an adjunction ()+: Top ← Top +: U \bigcirc : χ ---- (χ,×) $\gamma \longrightarrow \gamma_{+} = (\gamma \sqcup \{*\}, *) \xrightarrow{\gamma} \gamma_{+}$ Since U is a right adjoint, it preserves limits, so limits of diagrams of pointed spaces have the same underlying space as the limit of the corresponding di-gram in Top. $(X, x) - (Y, y) = (X \times Y, (x, y)),$ Colimits night be different! Defn The wedge sum of std spaces is $(X_{,x}) \vee (Y_{,y}) := X \amalg Y / x \sim y$ categorical coproduct $(\cdot \cdot \cdot) = (\cdot \cdot)$ in Topy Defn The smash product of ptd spaces is not the . Categorical product in $X_{AY} := \frac{X \times Y}{X \vee Y}$

Top * where X ~ Y is identified with ({xo} × Y) v (X × {yo}). The For X locally compact Hansdorff, the functors Xn-, () form an adjunction X ~ -: Top = Top : ()X. (Here (2,20) (X,x0) consists of based maps X-2 and is pointed by the constant function) If idea Descend from product-hom adjunction in Top. $f: \Upsilon \longrightarrow Z^{\times}$ based $\Rightarrow f(\gamma_{o}) = const_{z_{o}}$. Tour fly) te) = { [flyo][x] = = V eX = nor fly] based Vyey = (fly][xo] = = to Vyey Thus $\hat{f}: X \times Y \longrightarrow \mathcal{F}$ is constant on $([x, [x \times Y]) \cup (X \times Sy_0))$.

The based loops functor is SI= ()^{5'}. Since E = S' ∧ -, we get the suspension-loop adjunction I: Top, I Top; I DX = X This descands to htop, so that X X $[\Sigma X, Y] \cong [X, SIY]$ In particular, $\pi_{e} \mathcal{Q} X$ $\cong \pi_{i} X$ $\pi_{n+1} X = [S^{n+1}, X]$ =[∑5[°], X] ≅ [5",ΩX] $=\pi_n Q X$ Cor Tn X is a group for n21. If Induction + $\pi_{n+1} X \equiv \pi_n \Omega X$ Note That is Abelian for n >2 (not necessarily for n=1!) One-pt compactification of X? X* = X IL { ~} as a set

opens in X* are : () opens in X (2) complements of closed compact subsets of X
X* ~K = (X-K) U } o } for KEX compact closed. $\frac{\partial}{\partial t} = X$ $C^* = \text{Riemann sphere}$ $\stackrel{\sim}{=} CP'$. C