Day _24
Learning goals
Examples of (c_{0}) imin is
Uniqueness of (co)/imits
Terminal and initial objects
Suppose $D=\varnothing$, the cat with no objects, no marphisus. A functor $\phi \rightarrow C$ is an empty diagram.
when thy exist,

$$
\begin{aligned}
& \lim (\phi \rightarrow c)=*=\text { terminal object } \\
& \operatorname{clim}(\phi \rightarrow c)=: \phi=\text { initial object }
\end{aligned}
$$

The terminal objects accepts a unique morphism from every object in C, and the initial object maps uniquely to each object in C.

Wa have already seen (co) products as (co) limits -f diagrams of shaper ••. We ale saw pullbacks as limits of shape

Purhouts
A functor from or $\theta \rightarrow$. is a diagram $z \xrightarrow{f} x$ with colimit the pushout of x and y along f, g, denoted $x \frac{11}{z} y$ or $x \notin y$.
In set, $x \underset{z}{1} y=x \Perp y / f(z) \sim g(z)$
Same in Top (ω Iquotient topology) equiv rel'n gen'd by $f(z) \sim g(z)$ for $z \in Z$.
We denote a peshoect diagram as

As a special ese, in Set and Top,

Included,

$$
\begin{aligned}
& h(x)= \begin{cases}f(x) & x \in A \\
g(x) & x \in B\end{cases} \\
& \text { well-defind since } \\
& f_{i g} \text { agree on } \\
& A \cap B!
\end{aligned}
$$

Pushouts also permit the construction of spaces by attaching cells. Attach D^{n} to X along its boundary S^{n-1} via

Eng.

Inverse and direct limits
The limit of a diagram of shape $\bullet \longleftarrow \cdot \leftarrow \cdot \leftarrow \cdots$ ir called an inverse limit.
In set,

$$
\lim \left(x_{1} \stackrel{f_{1}}{\leftrightarrows} x_{2} \stackrel{f_{2}}{\longleftarrow} x_{3} \stackrel{f_{3}}{\leftrightarrows} \cdots\right)
$$

is the subset of $\prod_{i \geqslant 1} x_{i}$ consisting of $\left(x_{1}, x_{2}, \ldots\right) \in \Pi x_{i}$
5.1. $f_{i}\left(x_{i+1}\right)=x_{i}$ together with proj'n maps.

In Top, same set, endowed with subspace top insider ΠX :

Th colimit of a diagram of shat $\rightarrow \cdots \rightarrow \cdots \cdots$ \therefore called a ducted colimit.
Eng. In Abbe, colima $\left(\mathbb{Z}^{n} \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow \cdots\right)$

$$
=\mathbb{Z}[1 / n]
$$

Limits arse unique up to unique iso:
Suppose L and L^{\prime} are limits of a diagram $F: D \rightarrow C$.
Thun

since both η_{0} and η_{0}^{\prime} are terminal contour F.

But now $h^{\prime} h$ makes the diagram

commute.

So does id L_{L}, so by uniquumss, h'hiid .
similarly, $h h^{\prime}=i d_{2}$, Thus h, h^{\prime} are inverses isomorphisms, necessarily the only ones compatible with $\eta_{0}, \eta_{0}^{\prime}$
Similarly, colimits are unigk up to unique iso.

