Day 14
warning goals

- Reviews (path) connectivity
- Topological intermediate value theorem
- Hard fun

Recall that X is connuetud when all cts maps $f: x \rightarrow\{0,1\}$ ard constant. Equivalently, on of $u=f^{-1} 0, v=f^{-1} 1$ is empty. Note that f nonconstant $\Rightarrow u, v \neq \varnothing, u \cap v=\varnothing, u \cup v=\chi$ i.e. U, V firm a separation of X.

For X conn'd,

$$
\operatorname{Top}(X,\{0,1\})=\operatorname{Top}(X,\{0\}) \Perp \operatorname{Top}(X, 11\})
$$

In fact, X is connected of $\operatorname{Top}(X,-)$ praserms coproducts: $\operatorname{Top}\left(X, \prod_{\alpha \in A} Y_{\alpha}\right)=\frac{11}{\alpha \in A} T_{o p}\left(X, Y_{\alpha}\right)$.
X is path connected when $\forall x, y \in X \quad \exists \gamma: x \leadsto>y$ in X, i,.. $\gamma:[0,1] \rightarrow X$ cts with $\gamma(0)=x, \gamma(1)=y$.

We pround that intervals (and rays) in \mathbb{R} ard connected, from which it follows that path conn'd \Rightarrow conn'd. (oh could separate $[0,1]$)

Wi proved (path) conn'dness is preserved by

- quotient
- product
- image (of cts for)
- homotopy equivalence of spaces.

NB The box topology on $\prod_{\alpha \in A} x_{2}$ has basis $\left\{\prod_{\alpha \in A} u_{2} \mid U_{\alpha} \leq x_{\alpha}\right.$ open $\left.\forall \alpha \in \mathcal{A}\right\}$. This is finer than the product topology whose basic opens have the add' 1 condition $U_{\alpha}=X_{\alpha}$ for almost all α. In $H W$, youll see that $\mathbb{R}_{\text {bax }}^{\mathbb{N}}$ is not conn'd. of course,
 conned ness.

Intermediate Value The
Recall Math 112 INT:

$$
\begin{aligned}
& f:[a, b] \rightarrow \mathbb{R} c t s, f(c) \\
& \exists c \in[a, b] \text { s.1. } f(c)=y .
\end{aligned}
$$

Pf $f[a, b]$ is a conn'd subset $\notin \mathbb{R} \Rightarrow f[a, b]$ is an interval. Since $f(a), f(b) \in f[a b]$, get $y \in f(a, b]$, Wa can generalize by considering ch frs $f: x \rightarrow y$ where x is conn'd and y has the order topology wit some total order < on Y. (Basis = open intervals.)
The For such $f: x \rightarrow y$, if $f(a) \leq y \leq f(b)$ or $f(b) \leq y \leq f(c)$, then $\exists_{c} \in X$ sit. $f(c)=y$.
Pf The sat $U=f X \cap(-\infty, y), V=f X \cap(y, \infty)$ are nonempty disjoint open subsets of $f X \subseteq Y$.

If $\nexists c \in X$ s.t. $f(c)=y$, then $f X=u \cup V$ is a separation of $f X$, but $f X$ is conn'd bc f is cts O

Eng. The ordernd square is connected but not path conned:
$X=[0,1]_{1+x}^{2}$ is the square with lexicographic order topology. Check that win only used th following two properties to show intervals in \mathbb{R} warn conn'd:

- least upper bound property \} linear
- if $x<y$ 报, $x<z<y$. \int continuum
X satisfies this e as well ais connie!
Now suppose for \& $\exists \gamma:(0,0) \leadsto(1,1)$ in χ.
By IVT, $\gamma[0,1]=X$. For each $x \in[0,1]$,
$u_{x}:=f^{-1}\left(\{x\}^{x}(0,1)\right)$ is a nonempty subset of $[0,1]$:

For each $x \in[0,1]$, choose $q_{x} \in U_{x} \cap \mathbb{Z}$. Since the U_{x} are disjoint, u ir get an injection $[0,1] \longleftrightarrow Q, P$ since $[0,1]$ uncountable, Q countable.

Prop Every conns polygon can be partitioned into two convax polygons, each having equal area and perimeter.

Fix conns polygon $P \subseteq \mathbb{C}$.
Pf Consider the function $f: S^{\prime} \times \mathbb{C} \longrightarrow \mathbb{R}$ taking $\left(e^{i \theta}, z\right)$ to the carve to the left of the oriented lin through z in direction $e^{i \theta}$:

By IVT, for each $e^{i \theta} \quad \partial z_{\theta} \in \mathbb{C}$ sid. $f\left(e^{i \theta}, z_{\theta}\right)=$ $\frac{1}{2} \operatorname{arcea}(P)$. Call L_{0}, R_{θ} th loft and right polygons w/ equal ar ma.
Now consider $g:[0 ; \pi] \longrightarrow \mathbb{R}$
$\theta \longmapsto \operatorname{parim}\left(l_{\theta}\right)-\operatorname{perim}\left(R_{\theta}\right)$.
$W L O G_{1}$, suppose $g(0)>0$. Thin $g(2 \pi)<0$ $\left(b / c L_{\theta}, R_{\theta} \operatorname{swap}\right)$. By IVT, $\exists \theta$ sit. $g(\theta)=0$.

