Day 12
Learning Goals

- Connectudness
- Path connectedness
- Path components

Defu A space X is disconnected when $\exists U, V \subseteq X$ open
s.t. (1) $X=U \cup v,(2) u \cap v=\varnothing$, and (3) $u, v \neq \varnothing$.

A space X is connected when it is not disconnected.
Prop A space X is connected iff every cts for $X \rightarrow\{0,1\}_{\text {discrete }}$ is constant.
If (\Leftarrow) We prone the contrapositive. Suppose X is disconnected with $X=U \cup V, U, V$ open and disjoint.
Then x_{u} is cts and non constant.
(\Rightarrow) Again by contrapositive. Suppose $f: X \rightarrow\{0,1\}$ is noncoustant and cts. Then $U=f^{-1} O, V=f^{-1} 1$
witness that X is disconnected.
Recall that a path in X is a cts $f_{n} \gamma:[0,1] \rightarrow X$

Dafim an equiv rel'n on X as follows: $x \sim y$ when \exists path γ in X with $\gamma(0)=x, \gamma(1)=y$.
Reflexive: Constant path at x
Symmetric: Given $\gamma: x m y$ define $\bar{\gamma}: y \leadsto x$ by

$$
\bar{\gamma}(t)=\gamma(1-t) .
$$

Transitive: Giver $x \stackrel{\gamma}{\sim}>y \stackrel{\delta}{\rightarrow} z$ difim $\delta \cdot \gamma: x \leadsto z$ by

$$
(\delta \cdot \gamma)(t)= \begin{cases}\gamma(2 t) & t \in[0,1 / 2] \\ \delta(2 t-1) & t \in[1 / 2,1]\end{cases}
$$

informal notcation for γ being a path in x from
 x to y

Dufn A space X is path connected when $\forall x, y \in X$,

$$
x^{2} y(i, x, \exists \gamma: x \leadsto y) \text {. }
$$

Thin Image under a cts f_{n} preserves connectedness and path connectedness.
Pf (Connectestriess) Suppose $f: x \rightarrow y$ cts and $f x$ disconnected, $g: f X \rightarrow\{0,1\}$ ronconstant and cts. Then $g f: x \rightarrow\{0,1\}$ is too so X, disconnected.
(Path connectedness) Suppose X is path conned, $f: x \rightarrow 4$ cts. Given $f(x), f(y) \in f X$, choose $y_{: x} \leadsto y$ in x. Then $f(: f(x) \leadsto f(y)$.
Cor connected and path connected ara topological properties.
Cor The quotient of a (path) connected space is (path) connected.
Pf Quotients ara cts surjuctions.
Them space x, sur; $f_{n} f: x \rightarrow y$. If y is connected in T_{f} (quotient top) and $f^{-1} y$ connected $\forall y \in Y$,
then X is connected. of Given cts $g: X \rightarrow\{0,1\}$, know g is constant on each
 $f^{-1} y$. The points of 4 mays be identified with these fibers, so we get $\bar{g}: y \rightarrow\{0,1\}$ sit.

By univ prop of quotient, \bar{g} is continuous. Since y conn'd,
\bar{g} I constant $\Rightarrow g$ constant.
Then Suppose $x=\bigcup_{\alpha \in A} x_{\alpha}, \forall \alpha \in A, X_{\alpha}$ is (pith) connected, and $\bigcap_{\alpha \in A} x_{\alpha} \neq \varnothing$. Then x : (path) connected.

Eg. The space \mathbb{Q} (as a subspace of \mathbb{R}) is disconnected. Inaleed, consider $f: x_{\{x \in \mathbb{Q} \mid x>\sqrt{2}\}}$. Then

$$
f^{-1}\{0\}=\{x<\sqrt{2}\}=(-\infty, \sqrt{2}) \cap \mathbb{R}, f^{-1}\{1\}=(\sqrt{2}, \infty) \cap \mathbb{Q} \text {. }
$$

Them The connected selects of \mathbb{R} ara th intervals. If Reading: conn'd \Rightarrow interval. suppose $I \subseteq \mathbb{R}$ is an interval, $I=U \cup V, U, V$ nonempty disjoint. WLOG have $x \in U, y \in V$ with $x<2 y$. Th set $U^{\prime}=[x, y) \wedge U$ is nonempty and bod abow, s $s=\sup U^{\prime}$ exists by completeness of \mathbb{R}. Sinai $x<s \leq y$ and I is an interval, wither $s \in U$ or $s \in V$. If $s \in U, \exists \delta>0$ sit. $(s-\delta, s+\delta) \leq U$ (since U open). If $s+V, \exists \delta>0$ sit. $(s-\delta, s+\delta) \leq V$ (since V open). In the first case,
 s- δ is a smaller upper bound of U^{\prime} ', P.

Thu Path connected \Rightarrow connected.
Pf Suppose X is path connected and consider a cts $f_{n} f: X \rightarrow\{0,1\}$. Fix $x_{0} \in X . \quad \forall x \in X \quad \exists \gamma: x \rightarrow x_{0}$ Have
 and $f \gamma$ is constant since $[0,1]$ coun'd. This $f(x)=f \gamma(1)=f \gamma(1)=f\left(x_{0}\right)$ $\Rightarrow f$ is constant.

