
Zayd

tearing goats
° Review homotopics
. Introduce the homotopy category
° Understand homotopy equivalence
and the notion of homotopy invariance
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topology and the
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exhibits that a homotopy is equivalent to
a path in Top LX , Y ) .

Write If] =/ ge Top (x, y ) IF It: f ⇒ g f for the

homotopy class off
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The homotopy category is htop with

objects : top 't spaces
morphisms : htpy classes of maps +

I. e.
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If Cgtif) - Igf ) is well-defined , than fide ) will
serve as the identity .
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Associativity follows from
( (Dlg)) tf ) = Chg] If ]

= ( Chg) f)
= Eh Cgf))
= Eh] Igf ]
= Chl Hg] If] )

.

So htop really is a category !
A class tf ) is an iso in htop iff T Ig ] at .

(g) tf) = Cidx ) & If][g) -- tidy ] .

I.e. gf = idx & fog- idy .
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Note gf = ids . . so may use
Hlx

,
t) -- x as htpy .

Have fgcx) : Ey, .
Define

It : (D' - lol) x Eon] → D
'
- lol
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,
t)↳ txt ft
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,

parametrizes a straight
line from Izu to x .

Then Hlx , o) -- Ey,
-
- fglx) and Hlx

,D= x

so It : Fg- id# o
as desired .

Have a functor Top → htop
x x

ft ↳ test
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functors from htop are homotopy invariants .

A functor from Top that factors through htop
is a homotopy functor .


