\cap Valentine Day Special
Consider the following identification space:

You can think of V as two Möbius strips glued together orthogonally.
Now modify V by collating the midlines from both strips:

You can make a paper model of V^{\prime} by taping two Mobius strips together and then cutting along the midline.
What do you get?

* To get the most striking rusult, make sure the "chirality of the Midis twits are opposite.

Day 10
Learning goals

- understand "arbitrary" products of sets.
- def $+1^{\text {st }} / 2^{\text {nd }}$ char'ns of product topology

Recall For set, x, y, the Cartesian product of x, y is $x \times y=\{(x, y) \mid x \in X, y \in Y\}$.
This hes two projection maps

satisfying a universal property:

$$
\forall f_{1}: z \rightarrow x, f_{2}: z \rightarrow y \quad \exists!h: z \rightarrow x \times y \text { shh. }
$$

 commutes.

Moral exc $\quad X \stackrel{\pi_{1}}{\sim} X \times y \xrightarrow{\pi_{2}} y$ satisfins and is specifind by this property.

We can also form the disjoint union of sets:

$$
\begin{gathered}
x \Perp y:=x \times\{1\} \cup y \times\{2\} \\
x^{-i_{1}} \quad i_{2} y
\end{gathered}
$$

This satifies the universal property indicated by

May form the disjoint union of a collection of sets $\left\{X_{\alpha} \mid \alpha \in A\right\}$ as well :

$$
\chi_{x_{\alpha}} \prod_{i_{\alpha}} \prod_{\alpha \in A} X_{\alpha}=\left\{(x, \alpha) \mid x \in X_{\alpha}, \alpha \in A\right\}
$$

Universal property: $\forall\left\{f_{2}: x_{2} \rightarrow z \mid \alpha \in A\right\}$ $\exists!h: \Perp x_{\alpha} \rightarrow z$ sit. $h_{i_{\alpha}}=f_{\alpha} \forall \alpha \in \mathbb{A}$.

We can now form the product $\prod_{\alpha \in A} \alpha_{\alpha}$ of a collection of sets $\left\{X_{\alpha} \mid \alpha \in A\right\}$ as the set $\quad\left\{f: A \rightarrow \prod_{\alpha \in A} X_{\alpha} \mid f(\alpha) \in X_{\alpha} \quad \forall \alpha \in A\right\}$ ${ }^{\text {really }} i_{2}\left(X_{\alpha}\right)$
Universal property:

Now lat's get topological: let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ be a collection of topological spaces and consider

$$
X=\prod_{\alpha \in A} X_{\alpha}
$$

Defn The product topology on X is the topology gen'd by the basis $\left\{\begin{array}{l|l}\prod_{\alpha \in A} U_{\alpha} & \begin{array}{l}U_{\alpha} \subseteq X_{\alpha} \text { open and } \\ \text { all but finitely many }\end{array}\end{array}\right\}$

First characterization The product topology on X is the coarsest topology on X for which all of th proj'n map $\pi_{\alpha}: X \longrightarrow X_{\alpha}$ are continuous. PI Homework.

Second characterization The product topology on x is characterized by the following universal property:
\forall function $f: z \longrightarrow x$, f ir $c t s$ iff $\forall \alpha \in A$,

$$
\pi_{\alpha} f: z \rightarrow x_{\alpha} \text { acts. }
$$

PI Homework.
Eng. Whin is a function $f: z \rightarrow \mathbb{R}^{2}$ cts $\left(\mathbb{R}^{2}\right.$ with product top $=$ metric topology $)$? Have $f(z)=\left(f_{1}(z), f_{2}(z)\right)$ where

Justification of

metric basis open
product bans open

