MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 13

Problem 1. Recall that a subspace *Y* of *X* is called a *retract* of *X* if there exists a continous map $r: X \to Y$ such that $ri = id_Y$ for $i: Y \to X$ the inclusion mapping. Let $\beta: \mathsf{Top} \to \mathsf{CH}$ be the Stone-Čech compactification functor. Prove that any compact Hausdorff space *X* is a retract of βUX for $U: \mathsf{CH} \to \mathsf{Top}$ the inclusion of CH as a subcategory of Top. (*Hint*: Think about the counit of the adjunction (β, U); or think about limits of ultrafilters; or think about both.)

Problem 2. Let $[0,1]^{[0,1]}$ denote the set of functions $[0,1] \rightarrow [0,1]$ with the product topology. Part (a) below is an optional challenge problem; you may use its conclusion in (c).

- (a) (Challenge optional.) Prove that $[0,1]^{[0,1]}$ has a countable dense subset and thus is a compactification of \mathbb{N} .
- (b) Prove that every compactification of a space *X* is a quotient of βX .
- (c) Use (a) and (b) to conclude that the cardinality of $\beta \mathbb{N}$ is at least that of $[0,1]^{[0,1]}$ (*i.e.* that there is a surjective function $\beta \mathbb{N} \to [0,1]^{[0,1]}$).

Problem 3. Find spaces *X* and *Y* for which the evaluation map

 $X \times \mathsf{Top}(X, Y) \to Y$

is not continuous (where Top(X, Y) has the compact-open topology).