MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 11

Problem 1. Let *X* be a topological space and $f: X \to S$ a surjective function. Define an equivalence relation on *X* by $x \sim x' \iff f(x) = f(x')$. Let

$$R = \{ (x, x') \in X \times X \mid f(x) = f(x') \}.$$

Let r_1 and r_2 be the composition of the inclusion $R \hookrightarrow X \times X$ with the projection maps π_1 and π_2 , respectively. Prove that *S* with the quotient topology is the coequalizer of $r_1, r_2: R \rightrightarrows X$.

Problem 2. Let $f: Y \to X$ be an embedding of a space *Y* into a space *X*. Construct a diagram for which *Y* (along with the map *f*) is a limit. (*Hint*: Use something similar in flavor to what you built in the previous problem.)

Problem 3. For any set *X*, show that the functor $X \times -:$ Set \rightarrow Set preserves colimits, *i.e.*, is cocontinuous. (You need to specify what $X \times -$ means as a functor and show that $\operatorname{colim}(X \times F) = X \times \operatorname{colim} F$ for all diagrams *F* in Set).

Problem 4. Suppose that $L: C \cong D : R$ is a pair of adjoint functors with unit η and counit ε . Prove that η and ε satisfy the *triangle identities* given in Definition 5.2 of the text. (Optional: Also show that Definition 5.2 implies Definition 5.1, so that both definitions of adjoint pairs are equivalent.)