MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 6

Problem 1. A map $f: X \to Y$ is *locally constant* when for each $x \in X$ there exists an open neighborhoood U of x such that $f|_U$ is constant. Prove or disprove: if X is connected and Y is any space, then every locally constant map $f: X \to Y$ is constant.

Problem 2. Recall that $\mathbb{R}^{\mathbb{N}}$ is the space sequences in \mathbb{R} endowed with the product topology. There is another topology on $\mathbb{R}^{\mathbb{N}}$ called the *box topology* that has basis of open sets

$$\mathscr{B}_{\mathrm{box}} = \left\{ \prod_{n \in \mathbb{N}} U_n \mid U_n \subseteq \mathbb{R} \text{ open for all } n \in \mathbb{N} \right\}$$

We denote this space $\mathbb{R}^{\mathbb{N}}_{\mathrm{box}}$. Prove that $\mathbb{R}^{\mathbb{N}}$ is connected while $\mathbb{R}^{\mathbb{N}}_{\mathrm{box}}$ is not connected.

Problem 3. Prove that there are two antipodal points on the Earth's equator that have the same temperature.

Problem 4. Show that if *A* is a countable subset of \mathbb{R}^2 , then $\mathbb{R}^2 \setminus A$ is path connected. (*Hint*: How many lines are there passing through a given point of \mathbb{R}^2 ?)