MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 5

Problem 1. Reread Example 1.4 from the textbook and recall the order topology on a totally ordered set $(X,<)$. The lexicographic ordering \prec on the unit square $[0,1]^{2}$ is defined by

$$
(x, y) \prec\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x<x^{\prime} \text { or } x=x^{\prime} \text { and } y<y^{\prime} .
$$

(Here $<$ is the usual ordering on \mathbb{R}.) Call $[0,1]^{2}$ with the order topology induced by \prec the lexicographically ordereed square.
(a) Check that \prec is a total ordering on $[0,1]^{2}$ and then write "I have checked that \prec is a total ordering on $[0,1]^{2}$."
(b) Endow each of the following subsets of the lexicographically ordereed square with the subspace topology. In each case, describe the topology on the set in more explicit/familiar terms (e.g., discrete, etc.).
(i) $A=\{(x, 1 / 2) \mid x \in[0,1]\}$,
(ii) $B=\{(1 / 2, y) \mid y \in[0,1]\}$,
(iii) $C=\{(x, 1) \mid x \in[0,1]\}$,
(iv) $\Delta=\{(x, x) \mid x \in[0,1]\}$.

Problem 2. Given topological spaces X and Y, a function $f: X \rightarrow Y$ is called open (resp. closed) if and only if $f U \subseteq Y$ is open (resp. closed) for all open (resp. closed) $U \subseteq X$. Suppose that $f: X \rightarrow Y$ is a continuous surjection.
(a) Give an example to show f may be open but not closed.
(b) Give an example to show f may be closed but not open.
(c) Prove that if f is open or closed, then the topology on Y is the same as the quotient topology on Y induced by f. (For notational convenience, you may want to refer to these as \mathcal{T}_{Y} and \mathcal{T}_{f}, respectively; your task is to show $\mathcal{T}_{Y}=\mathcal{T}_{f}$ for f open or closed.)

Problem 3. Let $\left\{X_{\alpha} \mid \alpha \in A\right\}$ be a collection of topological spaces and recall that the product topology on $X=\prod_{\alpha \in A} X_{\alpha}$ is defined to be the topology generated by

$$
\mathscr{B}=\left\{\prod_{\alpha \in A} U_{\alpha} \mid U_{\alpha} \subseteq X_{\alpha} \text { open and all but finitely many } U_{\alpha}=X_{\alpha}\right\} .
$$

(a) Prove that \mathscr{B} is a basis.
(b) Prove that the product topology on X is the coarsest topology on X for which all the projection maps $\pi_{\alpha}: X \rightarrow X_{\alpha}$ are continuous.
(c) Prove that the product topology on X satisfies and is characterized by the following universal property: a function $f: Z \rightarrow X$ is continuous if and only if for every $\alpha \in A$, the function $\pi_{\alpha} f: Z \rightarrow X_{\alpha}$ is continuous.
(d) Briefly explain why the universal property may be sloganized as "a function into a product is continuous if and only if each of its components is continuous."
Problem 4. Let ℓ_{2} denote the set of square-summable sequences of real numbers, i.e.,

$$
\ell_{2}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid a_{1} \in \mathbb{R}, \sum a_{n}^{2}<\infty\right\}
$$

Define a function $d: \ell_{2} \times \ell_{2} \rightarrow \mathbb{R}$ by the rule

$$
d(a, b)=\sqrt{\sum\left(b_{n}-a_{n}\right)^{2}} .
$$

In this problem, you may assume that d is a well-defined metric on ℓ_{2}. (See Examples 1.7 and 1.8 in the textbook for additional context.) Endow ℓ_{2} with the metric topology induced by d.

Separately, we may give the set $\mathbb{R}^{\mathbb{N}}$ of real-valued sequences the product topology. Note that $\ell_{2} \subseteq \mathbb{R}^{\mathbb{N}}$.
(a) Prove that the subspace topology on ℓ_{2} induced by $\ell_{2} \subseteq \mathbb{R}^{\mathbb{N}}$ is not the same as the topology induced by d.
(b) The Hilbert cube is the set

$$
H:=[0,1] \times[0,1 / 2] \times[0,1 / 3] \times[0,1 / 4] \times[0,1 / 5] \times \cdots
$$

Show that $H \subseteq \ell_{2}$.
(c) Give H the subspace topology inside of ℓ_{2}. Prove that

$$
H \cong[0,1]^{\mathbb{N}}
$$

where the latter space is a product of countably many unit intervals ${ }^{1}$ with the product topology.
Problem 5. Given a topological space X and $n \in \mathbb{N}$, prove that any two functions $f, g: X \rightarrow \mathbb{R}^{n}$ are homotopic.

[^0]
[^0]: ${ }^{1}$ You could also think of $[0,1]^{\mathbb{N}}$ as sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $0 \leq a_{n} \leq 1$ for all n.

