MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 3

Problem 1. A morphism $f: X \to Y$ in a category C is called *monic* (or a *monomorphism*) when it satisfies the following property:

if $g_1, g_2: Z \to X$ are morhisms in C such that $fg_1 = fg_2$, then $g_1 = g_2$.

A morphism $f: X \to Y$ in a category C is called *epic* (or an *epimorphism*) when it satisfies the following property:

if $g_1, g_2: Y \to Z$ are morphisms in C such that $g_1 f = g_2 f$, then $g_1 = g_2$.

- (a) Which morphisms in Set are monic? which are epic?
- (b) Prove that every left invertible morphism is monic, and that every right invertible morphism is epic.
- (c) Find morphisms (in particular categories) exhibiting that the converses to the statements in (b) are *not* true in general.
- (d) Give an example of a morphism in Top that is epic and monic but not an isomorphism.

Problem 2. (a) What is a functor $BG \rightarrow BH$ for G and H groups?

(b) Given a partially ordered set (P, \leq) , continue to write *P* for the associated category. If (P, \leq) and (Q, \leq) are partially ordered sets, what is a functor $P \rightarrow Q$?

Problem 3. We know that functors preserve isomorphisms. Find an example to demonstrate that functors need not *reflect isomorphisms*: that is, find a functor $F : C \to D$ and a morphism f in C such that Ff is an isomorphism in D but f is not an isomorphism in C.

Problem 4. Check that there are four distinct topologies on a two-element set and that there are 29 distinct topologies on a three-element set. In each case, draw pictures of each topology and arrange them into *Hasse diagrams*¹ for the associated partially ordered set of topologies under containment.²

Problem 5. Give an example of a path $p: [0,1] \to X$ connecting a to b in the topological space $X = (\{a, b, c, d\}, \mathcal{T})$ where

 $\mathcal{T} = \{ \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, c, d\} \}.$

¹A *Hasse diagram* for a poset (P, \leq) is a directed graph with vertex set P and a directed edge $p \rightarrow q$ if and only if p < q in P and there is no $r \in P$ such that p < r < q.

²*Challenge*: If the sets in question are $[2] = \{1, 2\}$ and $[3] = \{1, 2, 3\}$, then the posets of topologies on [2] and [3] are sub-posets of $2^{2^{[2]}}$ and $2^{2^{[3]}}$, respectively. The Hasse diagrams for $2^{2^{[2]}}$ and $2^{2^{[3]}}$ are 4- and 8-dimensional cubes, respectively. Find a way to represent / think about the Hasse diagrams of topologies inside of these cubes.