MATH 342: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 2

Problem 1. Suppose $S \subseteq 2^X$ with union all of X. Show that $\langle S \rangle$ has basis the set of finite intersections of elements of S. Conclude that $\langle S \rangle$ consists of arbitrary unions of finite intersections of elements of S. (Such a set S is called a *subbasis*.)

Problem 2. Prove that d_1 and d_{∞} are metrics on \mathbb{R}^n . Draw the unit ball centered at $0 \in \mathbb{R}^2$ for each of these metrics.

Problem 3. Suppose that d_1 and d_2 are metrics on X with associated topologies \mathcal{T}_1 and \mathcal{T}_2 , respectively.

(a) Show that $\mathcal{T}_1 = \mathcal{T}_2$ if and only if for all $x \in X$ and r > 0, there exists r', r'' > 0 such that

$$B_{d_1}(x,r') \subseteq B_{d_2}(x,r)$$
 and $B_{d_2}(x,r'') \subseteq B_{d_1}(x,r)$.

(Here $B_d(x, r) = \{y \in X \mid d(x, y) < r\}$ is the open ball centered at x of radius r with respect to metric d.)

(b) Show that d_1 , d_2 , and d_{∞} define the same topology on \mathbb{R}^2 . (Or go further and show that every metric topology on \mathbb{R}^n given by d_p , $1 \le p \le \infty$, is the same.)

Problem 4. Suppose that $f: X \to Y$ is a function between metric spaces X and Y and that for all $x \in X$, $y \in Y$ such that f(x) = y, the following condition holds:

for all $\varepsilon > 0$ there exists $\delta > 0$ such that $fB(x, \delta) \subseteq B(y, \varepsilon)$.

- (a) Briefly explain the similarity between this statement and the definition of continuity you see in Math 112.
- (b) Prove that f is continuous (in the sense that $f^{-1}U$ is open in X for all $U \subseteq Y$ open, where X and Y carry their respective metric topologies).

Problem 5. Consider a morphism $f: x \to y$ in a category C. Show that if there exist morphisms $g, h: y \rightrightarrows x$ such that $gf = id_x$ and $fh = id_y$, then g = h and f is an isomorphism. Use this to show that inverse morphisms are unique.

Problem 6. Fix a field k and let Mat_k have objects the natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ and morphisms

 $Mat_k(m, n) = \{n \times m \text{ matrices with entries in } k\}.$

Define composition by

$$\operatorname{Mat}_{\mathsf{k}}(n,\ell) \times \operatorname{Mat}_{\mathsf{k}}(m,n) \longrightarrow \operatorname{Mat}_{\mathsf{k}}(m,\ell)$$

$$(A, B) \longmapsto AB$$

where AB denotes the matrix product of A and B. Check that Mat_k is a category, freely citing results needed from linear algebra.