MATH 341: TOPICS IN GEOMETRY HOMEWORK DUE FRIDAY WEEK 4

SOLUTION HINTS

Problem 1. This is a continuation of Problem 5 from HW2, and you may freely use the conclusions of that problem here.

Let $\triangle ABC$ be a triangle in the Euclidean plane. Let A^* denote the point in the plane such that $\triangle A^*BC$ is equilateral and such that A and A^* lie on opposite sides of the line through B and C. Let θ_A denote the rotation about the circumcenter¹ O_A of $\triangle A^*BC$ which takes B to C. Similarly define θ_C and θ_B .

- (a) Show that $\theta_C \theta_B \theta_A = \text{id.}$ *Hint*: Show that $\theta_C \theta_B \theta_A$ is a rotation by angle 0.
- (b) Extend the notation above in the natural way and then show that the circumcenters O_A , O_B , and O_C form an equilateral triangle. *Hint*: Calculate $\theta_B \theta_A$.
- *Solution.* (a) The rotations θ_B and θ_A are both by an angle of $2\pi/3$, so $\theta_B \theta_A$ is a rotation by $4\pi/3$ or $-2\pi/3$. Since θ_C is a rotation by $2\pi/3$, the composite $\theta_C \theta_B \theta_A$ is a rotation by 0 and hence the identity.
- (b) Use Problem 5(c) from the previous homework assignment.

Problem 2. Let *E* denote an *n*-dimensional Euclidean space and let *k* and ℓ be lines through the origin in *E*. Define the *acute angle* $\angle(k, \ell) \in [0, \pi/2]$ between *k* and ℓ by the formula

 \square

 \square

$$\angle(k,\ell) = \arccos\left|\left\langle \hat{k}, \hat{\ell} \right\rangle\right|$$

where \hat{k} and $\hat{\ell}$ are unit vectors generating k and ℓ , respectively.

- (a) Show that the acute angle defines a metric on *projective space* P(E), the set of lines through the origin in *E*. *Hint*: Interpret P(E) as the orbit space for the action of the antipodal map on the sphere S(E), and use what we have developed about spherical geometry.
- (b) Show that there is a unique geodesic passing through any two distinct points of P(E).
- Solution. (a) The map $S(E) \to P(E)$, $x \mapsto \operatorname{span}\{x\}$ is surjective and 2-to-1 with fiber $\{\hat{\ell}, -\hat{\ell}\}$ over a line $\ell \in P(E)$. This identifies P(E) with $S(E)/x \sim -x$. Identity of indiscernibles and symmetry of $\angle(k, \ell)$ are easy to check. For the triangle inequality, one must *carefully* choose lifts to S(E) (so that acute angles are chosen) then apply the spherical triangle inequality. Many students failed to use sufficient care in selecting lifts.
- (b) Again by carefully choosing \hat{k} and $\hat{\ell}$ with $\langle \hat{k}, \hat{\ell} \rangle \geq 0$, one can project the spherical geodesic from \hat{k} to $\hat{\ell}$ down to P(E) to get a geodesic from k to ℓ in P(E). For uniqueness, lift geodesics to S(E) to contradict spherical geodesic uniqueness.

Problem 3. The *torus* is the set $S^1 \times S^1$ endowed with the product metric from Problem 4 of the previous problem set (where $S^1 = S(\mathbb{R}^2)$ is endowed with the standard spherical metric). The

¹The *circumcenter* of a triangle is the center of the (unique) circle passing through the vertices of the triangle.

canonical map $\chi \colon \mathbb{R} \to S^1$, $\theta \mapsto (\cos \theta, \sin \theta)$ induces a map

$$\nu \colon \mathbb{R}^2 \longrightarrow S^1 \times S^1$$
$$(\theta, \varphi) \longmapsto (\chi(\theta), \chi(\varphi))$$

(a) For points $p, q \in S^1 \times S^1$, show that

$$d(p,q) = \inf_{\{(P,Q) \in \mathbb{R}^2 \times \mathbb{R}^2 | p = \nu(P), q = \nu(Q)\}} d(P,Q).$$

- (b) Show that ν is a *local isometry*: there exists a constant r > 0 such that for all $P \in \mathbb{R}^2$ the open disk with center P and radius r is mapped bijectively by ν onto the "metric disk" $\{q \in S^1 \times S^1 \mid d(q, \nu(P)) < r\}$ in $S^1 \times S^1$.
- (c) Show that an affine line in \mathbb{R}^2 is mapped by ν onto a geodesic in $S^1 \times S^1$ and that all geodesics in $S^1 \times S^1$ have this form.
- *Solution.* (a) The crux here is to choose $\theta_0, \theta_1, \phi_0, \phi_1 \in \mathbb{R}$ such that $p = \nu(\theta_0, \phi_0), q = \nu(\theta_1, \phi_1), |\theta_0 \theta_1| < \pi$, and $|\phi_0 \phi_1| < \pi$. Taking $P = (\theta_0, \phi_0)$ and $Q = (\theta_1, \phi_1)$ gives d(p, q) = d(P, Q), so the infimum in question is $\geq d(p, q)$. Other valid choices of P and Q add integer multiples of 2π to the angles and a bit of formula/inequality manipulation gives the other needed inequality.
- (b) The above argument makes it clear that $r \le \pi/2$ will work.
- (c) This mostly amounts to using (b) and the fact that affine lines in \mathbb{R}^2 are geodesics.