MATH 341: TOPICS IN GEOMETRY HOMEWORK DUE FRIDAY WEEK 3

SOLUTION HINTS

Warning: These are not full solutions. Your work should be more complete and more rigorous.

Problem 1. Let *E* denote three-dimensional Euclidean space and let *B* denote the closed ball of radius π centered at the origin in *E*. Define a function $f: B \to SO(E)$ taking a point *x* to the rotation with axis span_{$\mathbb{R}}{x}$ by angle |x| (in the counterclockwise direction relative to the orientation of span_{\mathbb{R}}{*x*} pointing from 0 to *x*).</sub>

- (a) Show that *f* is injective on $B^{\circ} = \{x \in E \mid |x| < \pi\}$.
- (b) Suppose that $\sigma \in SO(E)$ is the value of f on a point $x \in \partial B = \{x \in E \mid |x| = \pi\}$. Precisely describe $f^{-1}\{\sigma\}$.
- (c) (Optional.) Real projective 3-space, ℝP³, is the set of lines through the origin in ℝ⁴. Explain (perhaps informally) why your answers to (a) and (b) imply that SO(3) is homeomorphic to ℝP³.
- *Solution.* (a) Suppose that f(x) = f(y) for $x, y \in B^{\circ}$. Then f(x) and f(y) have the same axis of rotation, whence span $\{x\} = \text{span}\{y\}$. Since f(x) and f(y) rotate E by the same angle, we also have $|x| = |y| + 2\pi k$ for some $k \in \mathbb{Z}$. Since $x, y \in B^{\circ}$, we deduce that k = 0, so $x = \pm y$. It is easy to check that $f(x) \neq f(-x)$ for $x \in B^{\circ}$, so x = y, proving injectivity on B° .
- (b) The previous argument reveals that $f^{-1}{\sigma} = {\pm x}$.
- (c) Let \sim be the equivalence relation on B generated by $x \sim -x$ for $x \in \partial B$. We need to show that $B/\sim \cong \mathbb{R}P^3$. We take it as clear that $\mathbb{R}P^3$ is identified with S^3 mod the antipodal action. We can map B to the "upper hemisphere" of S^3 , and every point is in its own equivalence class except for those on the boundary.

Problem 2. Let *E* denote three-dimensional Euclidean space and let $\sigma \in SO(E)$ be a rotation with angle $\geq \pi/2$. Show that there exists a line *L* through 0 such that *L* and $\sigma(L)$ are orthogonal. *Hint*: Observe that the angle between *L* and $\sigma(L)$ is a continuous function of *L*.

Solution. If *L* is the axis of σ , then $\angle(L, \sigma(L)) = 0$. If *L* is perpendicular to the axis of σ , then $\angle(L, \sigma(L)) \ge \pi/2$. If we can argue that $\angle(L, \sigma(L))$ is a continuous function of *L*, and we can "draw a line" between the above two lines, then we may apply the intermediate value theorem to conclude that an *L* exists such that $\angle(L, \sigma(L)) = \pi/2$. For full credit, continuity and the "line between lines" must be formalized.

Problem 3. Let $E = \mathbb{R}^{-3,1}$ denote the standard four-dimensional real vector space with quadratic form of Sylvester type (-3, 1). (In particular, $(x, y, z, t) \mapsto t^2 - x^2 - y^2 - z^2$.) Show that the diagonal matrices P = diag(-1, -1, -1, 1) and T = -P = diag(1, 1, 1, -1) are in $O(-3, 1) := O(\mathbb{R}^{-3,1})$. Determine the structure of the subgroup of O(-3, 1) generated by P and T. Which elements of this group belong to $\text{Lor}^+(E)$?

Solution. We have $P^2 = T^2 = I$ and PT = -I. We conclude that the subgroup generated by P and T is $\{I, P, T, -I\}$ and is isomorphic to the Klein four-group. Only I belongs to $Lor^+(E)$, which can be checked on determinants and the $\langle x, \sigma(x) \rangle > 0$ condition.

Problem 4. Let *X* and *Y* be metric spaces with distance functions d_X and d_Y , respectively. For points P = (x, y) and Q = (x', y') in $X \times Y$, define

$$d(P,Q) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Prove that the associated function $d: (X \times Y) \times (X \times Y) \rightarrow \mathbb{R}$ gives a metric on $X \times Y$.

Solution. If you Google "product metric space" you will find many solutions to this problem. *Exercise*: Determine which solutions are actually correct.

Problem 5. Let σ and ρ be rotations of the Euclidean plane with distinct centers A and B.

- (a) Let γ denote reflection in the line through *A* and *B*. Show that there is a line *a* through *A* and a line *b* through *B* such that $\rho = \beta \gamma$ and $\sigma = \gamma \alpha$ where β is reflection in *b* and α is reflection in *a*.
- (b) In the notation of (a), show that if *a* and *b* are parallel, then $\rho\sigma = \beta\alpha$ is a translation; if *a* and *b* intersect in *C*, then $\rho\sigma = \beta\alpha$ is a rotation with center *C*.
- (c) Suppose that ρ and σ are rotations with the same angle $-2\pi/3$ (still with distinct centers *A* and *B*). Show that $\rho\sigma$ is a rotation with angle $2\pi/3$ and that its center *C* forms an equilateral triangle with *A* and *B*.

Please draw pictures throughout your answer to Problem 5.

Solution. Begin by computing the rotation given by composition of reflection in lines through a common point. (You'll get a particular rotation involing twice the angle between the lines.) The rest follows with care and good draftsmanship. \Box