Lecture 9

Saturday, February 7, 2015 3:32 PM

For
$$H \leq G$$
 a subgroup of G, recall that
 $G_{/H} = \{g, H \mid g \in G\}$
is the set of left cosets of H in G. We know that the gH
purtition G, and theat G/H has a gp structure given by
 $gH \cdot g'H = (gg')H$ iff $H \leq G$: $gHg^{2} = H \forall g \in G$.
How big is G/H ?
Lagranges Theorem If G is a finite group and $H \leq G$, then
 $|G/H| = \frac{|G|}{|H|}$. In purticular, $|H|$ divides $|G|$.
Note This is one reason why when $H \leq G$, G/H is called a quotient group.
If left $|H| = n$, $|G/H| = k$. We claim that $H \rightarrow gH$ is a dijection.
Taked, it is surjective by def'n of gH . $h \rightarrow gh$
Tujectivity. Flows from concellation.
Thus $|H| = |gH| = n \forall g \in G$. Since G/H partitions G into k cosets
each of size n, we have that $|G| = kn = |G/H| (|H|)$, as desired \square
 of H in G and is denoted $[G:H]$.
Note The G is finite and $x \in G$, then $|G/H|$ is called the index
of H in G and is denoted $[G:H]$.
Note $|G| = 1$.
Note $|G| = 1$.
 $M = |G| = 1$ is prime, then G is cyclic, isomorphic to Z_P .
 $M = |G| = 1$ is prime, then G is cyclic of order P .
 $M = |G| = p \Rightarrow \langle x \rangle = G$ is cyclic of order P .

Saturday, February 7, 2015 3:50 PM For G finite, Lagrange's theorem gives us an assignment {H≤G} ~~ { divisors of |G|} $H \longrightarrow |H|$ For each divisor of [4], is there a subgroup HSG of that order? In general, NO. Let The the group of symmetries of the tetrahedron, so TI=12. Suppose JHI = T with IHI= 6. Thun |T/H|=2. General fact (we'll come back to this): every subgy of index 2 is a normal subgy, i.e. H≤T and T/H = Z2. $\forall g \in T$. $(gH)^{n} = H \implies g^{2} \in H$. If |g|=3, then g = g⁴ = (g²)² ∈ H, i.e. H must contain all elts of T of order 3. But abserve: there are 8 rotations of a tetrahedron of order 3: Since [H]=6, we have reached a contradiction and learn that no such H exists ! Hure is a partial converse to Lagrangés theorem. rotation by Thy & by -Thy around Cauchy's Theorem If G is finite each such axis (of which and p is a prime dividing 161, then & has an element of order p. thurn are 4) Pf Later. Strongest gen'l converse : <u>Sylow's Theorem</u> IFG is finite of order p^m, paprime not dividing m, then G has a subgp of order pⁿ.

24 Later later.

Saturday, February 7, 2015 4:15 PM

Und jetzt... a coset/subgroup grab bay !
Prop If [G:H]=2, then HS G.
Pf Let g & G & H so G/H = {H, gH} = {H, Hg} = {H, G & H}
Clearly gH = G & H = Hg, so gHg'' = H. []
Data Let H, K & G and define HK = {hk | heH, keK}
Prop If IHI, |K| < 00, then IHK = IHIKI
IHAKI
PF HK = U hK. Suffices to find the number of distinct hK.
Call of size |K| and
aither equal or disjoint
hK = heK
$$\Leftrightarrow$$
 h.h. = H destinet h (HaK) = h. (Hak
Thus H distinct hK, heH = # destinet h (HaK), heH.
By Lagrange, the latter # is IHI
IHAKI
Since each hK has size |K|, we heren
|HK = IHIKI
Prop If H, K & G, then HK & G & HK = KH.
Pf Reading (indices and saverses {) []
HK = KH does not mean alts of H commute w/alts of K.

Saturday, February 7, 2015 4:31 PM

Cor H, K ≤ G & H < N_G(K)
$$\implies$$
 HK ≤ G.
In particular, if K ≤ G then HK ≤ G & H ≤ G.
Pf show that HK=KH. Let h ∈ H, k ∈ K. Since H ≤ N_G(K),
kkh⁻¹ ∈ K \implies hk = hk(h⁻¹h) = (h kh⁻¹)h ∈ KH.
Thus HK ∈ KH.
Similarly, kh = h(h⁻¹kh) ∈ HK, giving the opposite inclusion.
Use now get the cor frows the prop.
Final note G/H = {gH | g ∈ G} = left cosets
H\G = {Hg | g ∈ G} = right cosets
gH = Hg Vg ∈ G
I
H ≤ G \iff G/H = H\G forms a group
I
H ≤ G \iff G/H = H\G forms a group
I
H ≤ G \iff G/H = H\G forms a group
I
H ≤ ker ($\Psi: G \rightarrow G'$) for some Ψ
G/H & H\G are still sets when H ≤ G is not normal.
In fact, G ≥ G/H and this sort of action is super important.
g, (g, H) = (g, g,)H