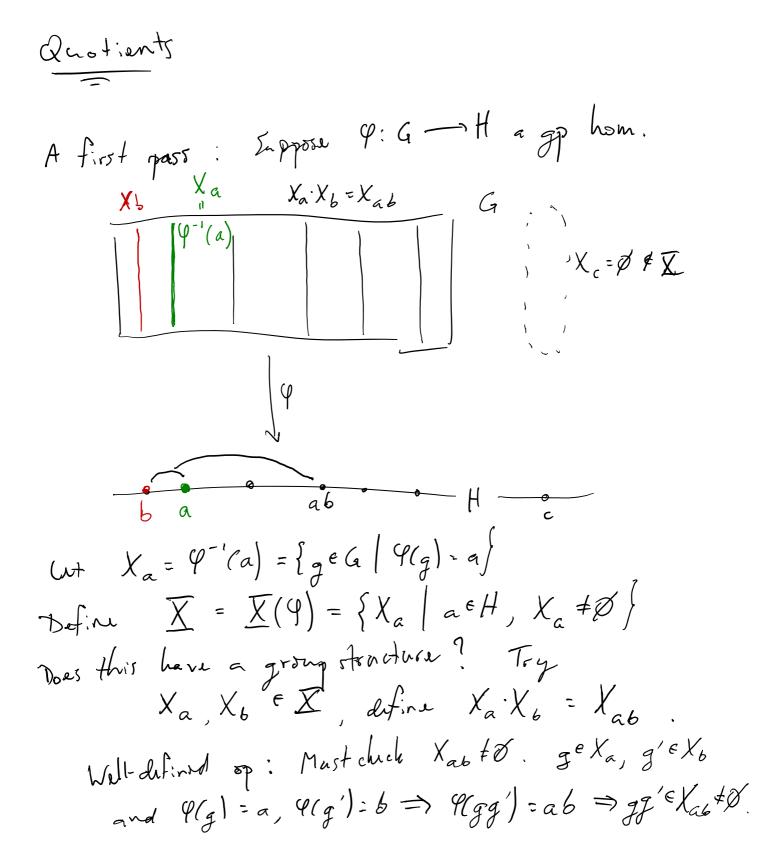
Lecture 7

Wednesday, February 4, 2015 9:59 AM

 $\frac{\lim_{m \to \infty} If x^{e}(a, m, n \in \mathbb{Z} : t. x^{n} = 1 = x^{m}, then x^{d} = 1}{\operatorname{Ar} d = (m, n)}, If x^{m} = 1, then |x||^{m}.$ Pf by the Enclidean algorithm, d = mr + nsfor some ris EZ. Thus $x^{d} = x^{mr} x^{ns} = (x^{m})^{r} (x^{n})^{s}$ = 1~ 15 = 1 Theme but H= < X> be cyclic. () Every subgy to Kight is cyclic, K= (x) for $d = \min \{e \in \mathbb{Z}^+ \mid x^e \in K\}$ ○ If 14|= 2, the tatb ∈ N, (x^a) ≠ (x^b), but $\langle x^n \rangle = \langle x^{-n} \rangle$. Thus {KSH} <> N 3 If 141=ns & then for each act of set. a/n, J!KSH U/ Kl=a. Thus {K≤H} ← {a∈N | aln}. e.g. ZG = SI). Divisors of 6 and 1,2,3,6. 1, (3), (2), (1)= 26 are the corr. subgps.

Wednesday, February 4, 2015 10:11 AM

X



Wednesday, February 4, 2015 10:25 AM

Assoc :
$$X_{a} \cdot (X_{b} \cdot X_{c}) = X_{a} \cdot X_{bc} = X_{a(bc)}$$

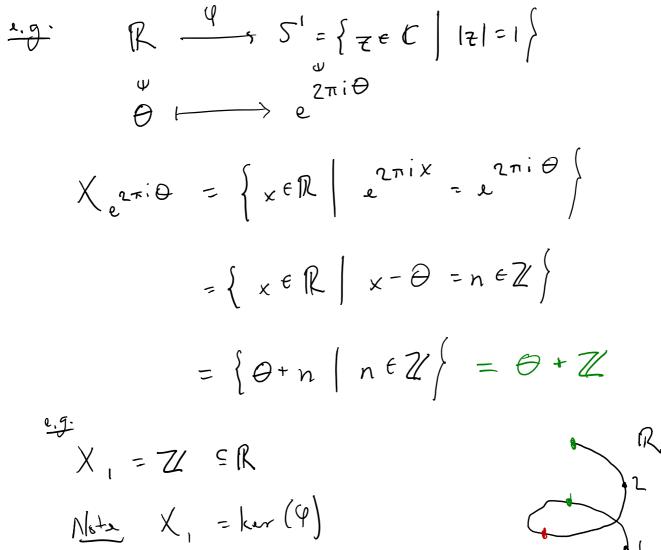
= $X_{(ab)c} = X_{ab} \cdot X_{c}$
= $(X_{a} \cdot X_{b}) \cdot X_{c}$

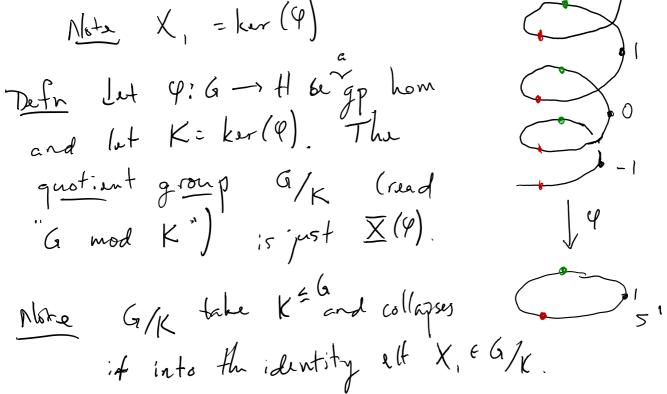
-

Id:
$$X_1 \cdot X_a = X_{1a} = X_a = X_{a1} = X_a \cdot X_1$$

=) X_1 is an if if $X_1 \in \overline{X}$.
 $I \in X_1 \cdot 6/c \cdot 9(1) = 1$. so $X_1 \in \overline{X}$.
Inv: $X_a \in \overline{X}$, is $X_{a^{-1}} \in \overline{X}$? If $9(g) = a$ then
 $p(g^{-1}) = (9(g_1))^{-1} = a^{-1}$
 $E_b \cdot g^{-1} \in X_{a^{-1}}$.
 $X_a \cdot X_{a^{-1}} = X_{aa^{-1}} = X_1 = X_{a^{-1}a} = X_{a^{-1}} X_a$.
Thus $\overline{X}(\Psi) \cong im(\Psi)$ If $\overline{3}$: justion by construction.
 $X_a \cdot X_a \longrightarrow 9(a)$ $X_{ab} \longmapsto 9(a) \cdot 9(ab)$
If $X_a \cdot X_b \longmapsto 9(a) \cdot 9(b)$.
Avates of the
"First isomorphism theorem" is

Wednesday, February 4, 2015 10:33 AM





Wednesday, February 4, 2015 10:43 AM

Prop let
$$\emptyset: G \rightarrow H$$
 be a hon if gps $in/levend K$, but
 $X \in G/K$. Then for any $u \in X$, we have
 $X = \{uk \mid k \in K\} = \{ku \mid k \in K\}$.
If This is not the same as $uk = ku$. $\forall k \in K$.
If Since $X \in G/K = \overline{X}(9)$, $\exists a \in H$ s.t. $X = \varphi^{-1}(a) \neq \emptyset$.
For $u \in X$, $\varphi(u) = a$. Define $uK = \{uk \mid k \in K\}$.
Claim $uK \subseteq X$: $\varphi(uk) = \varphi(u) \varphi(k) = a \cdot 1 = a$.
Claim $uK \subseteq uK$: For $g \in X$. Want $k \in K$ s.t. $uk = g$.
Must take $k = u^{-1}g$. Then $\varphi(k) = \varphi(u^{-1}) \varphi(g)$
 $= a^{-1} \cdot a = 1$
 $\Rightarrow k \in K$.
Thus $X = uK$. $X = Ku$ by similar arguments.