Lecture 5

Monday, February 2, 2015 9:59 AM

Honomrakimi:

Notes 1 gps G, H always have trivial hom

1: $G \longrightarrow H$ 1(gh) = 1

g $\longrightarrow 1$ 1(q).1(h) = 1.1=1

(3) $| = \varphi(1) = \varphi(xx^{-1}) = \varphi(x) \varphi(x^{-1})$ $| = \varphi(1) = \varphi(xx^{-1}) = \varphi(x) \varphi(x^{-1})$ $| = \varphi(1) = \varphi(xx^{-1}) = \varphi(x) \varphi(x^{-1})$ $| = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1) = \varphi(1)$ $| = \varphi(1) =$

Group Actions

Defr A (left) group action of G on a set A, denoted $G \subset A$, is a map $G \times A \longrightarrow A$ satisfying $(g,a) \longmapsto g \cdot a$

(1) g₁·(g₂·a) = (g₁J₂)·a tg₁,g₂·6, a∈A

1 a = a Ha & A.

Monday, February 2, 2015 10:13 AM

$$\begin{aligned}
First & \text{chick that } gh = g \circ fh \\
gh & = g \cdot fh = g \cdot fh
\end{aligned}$$

$$\begin{aligned}
&= g \cdot (h \cdot a) = g \cdot fh = g \cdot$$

Given e hom
$$\varphi: G \longrightarrow S_A$$
 us get GOA via $g: a = (\varphi(g))(a)$.

Exe show that this processes reverse each other.

The assoc perm rap'n is the trivial hom 1: a - 5/4 .

(1) The identity homomorphism
$$\sum_{A} \longrightarrow \sum_{A} has$$
assoc action $\sigma : a = \sigma(a)$

$$S_A \times A \longrightarrow A$$

 $(G, a) \longmapsto \sigma.a = \sigma(a)$

Monday, February 2, 2015 (2) \mathbb{D}_{2n} $\mathbb{C}_{n} = \{1, 2, ..., n\}$ Action records how the labels are perpented. G CG via left multiplication: $g \cdot h = gh$. Cayley's Theorem The gp hom a Sa assoc

Vilh the left mult action is injective.

With the left mult action is injective.

In particular, every gp is isomorphic to a

In particular, every gp & every group of order

subgp of a symmetric gp & every group of order

NOW is isomorphiz to a subgroup of Sn. Pf Saff:=25 to show ker (4) = 1 = { []. Suppose geher (q) i.e. $Q(g) = id : G \longrightarrow G$. Thus 1= (Q(g))(1) = g.1 = g and kur f=1. Subgroups HEG is a subgroup of G if

① H + Ø

@ H is closed under mult

1) H is closed under invarses.

Motation Write H & G when His a subgroup of G.

G, 1 \le 6

· Fafild than {+1} < Fx = F \ {0} v/mn(+

 $\left. \left\{ 1, r, r^{2}, r^{3}, \ldots, r^{n-1} \right\} \leq D_{2n}$

Subgroup Criterion H = G is a subgroup of G iff (1) H \$ Ø

② x,y eH = xy eH;

If $|H| < \infty$, then it suffices to chuck $H \neq \emptyset$ & closed under mult.

IF H = G => U+@ .

Assume D+O. By O, Le have some xx H = x·y € H. Thus H ≤ G. □

Subgps from group actions

GOSDS. Define the stabilizer of s (isotropy ofs)

to be $G_S = \{g \in G \mid g.S = S\} = Stab_G(s)$.

Prop
$$G_s \leq G$$
.

Pf $1 \in G_s$ $6/c$ $1 \cdot s = s$. $s \cdot G_s \neq 0$.

For $x \in G_s$ have $s = 1 \cdot s = (x^- \cdot x) \cdot s$

$$= x^{-1} \cdot (x \cdot s)$$

$$= x^{-1} \cdot (x \cdot s)$$