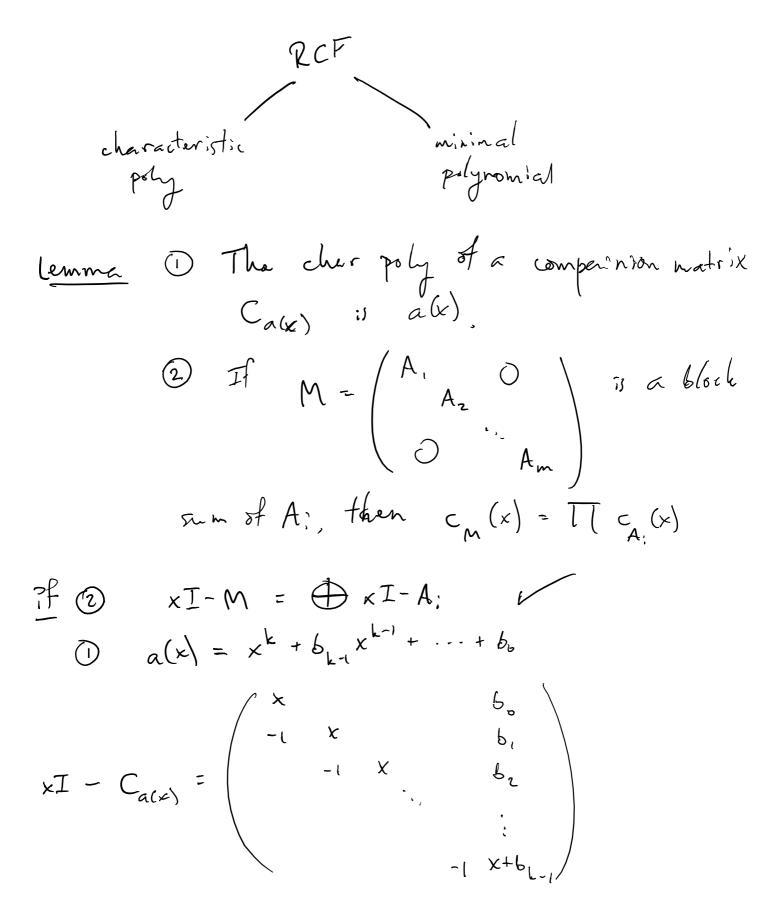
Lecture 48 Monday, April 27, 2015 Recall Rational Canonical Form (incar transformation T: V -> V, V a fin dim F-vs. I basis of V s.t. the matrix for T withat basis was a direct sum of conspanion matrices $C_{a_i(x)}$, where $V \cong \bigoplus F[x]/(a_i(x))$ * a, (x) | a, (x) | ··· (a, (x) are monie poly's in F[x]. If a(x) = x + b x + 1 + ... + bo thin $C_{a(x)} = \begin{pmatrix} 0 & 0 & 0 & -b_{0} \\ 1 & 0 & 0 & -b_{1} \\ 0 & 1 & 0 & -b_{1} \\ 0 & 0 & 0 & -b_{2} \\ 0 & 0 & 0 & -b_{3} \\ 0 & 0 & 0 & -b_{3} \\ 0 & 0 & 1 & -b_{1} \\ 0 & 0 & 1 & -b_{1} \\ \end{pmatrix}$

Recall S,T: V -> V linear mays are similar if Flimar iso U: V-V r.t. $5 = UTU^{-1}$.

Monday, April 27, 2015 10:11 AM

This TFAE: [] S, T are similar \bigcirc $\bigvee_{5} \cong \bigvee_{T} as F[x] - modulus$ Vwl x acting as T 3 S& T have the same RCF. -DEF- $Pf' = 1 \implies 2$: Tale $U \in GL(V) = 1$. 5 = UTG''Thus $U: V_T \longrightarrow V_S$ is an iso of F[2]-modulu. Induced, $U(x, \cdot) = U(T_r) = (UT)(\cdot)$ $= (5U)(v) = S(Uv) = k \cdot (Uv).$ ②⇒③: Same inv't factors => Same RCF. ③⇒①: ∃bases s.t. 5, T here same matrix so SJT similar. Cor A, B & M, (F), F & K another field. A, B are similar over K a similar over F. DI Note RCF of matrix A always has entries in the smallest subfield containing entries of A.



Monday, April 27, 2015 10:31 AM

Expand along final column:

$$(-1)^{k-1} = (-1)^{k-1} = (-1)^{k-1} = (-1)^{k-1} = b_0$$

 $(-1)^{k-1} = b_0$

$$(-1)^{k} b_{1} dut \begin{pmatrix} x \\ -1 & x \\ & -1 & x \\ & & -1 \end{pmatrix} = (-1)^{k} b_{1} x (-1)^{k/2}$$

$$= b_{1} x$$

Monday, April 27, 2015 10:34 AM

The If
$$a_{i}(x), ..., a_{m}(x)$$
 are the invert factors
of the $F[x] \cdot mod \quad V_{T}, \quad T: V \longrightarrow V$, then
 $C_{T}(x) = \prod_{i=1}^{m} a_{i}(x),$

$$PF \quad (ut \quad B = \begin{pmatrix} C_{a,(x)} \\ & \ddots \\ & & \ddots \\ & & C_{a_{m}}(x) \end{pmatrix} \quad b_{u} \quad H_{u} \quad RCF \quad sF \quad T$$

By the lemma,
$$c_{B}(x) = T[a; Cx]$$
.
But T & B are similar, thus have the same characteristic pelynomial.
Cor $m_{T}(x) | c_{T}(x)$
 $. c_{T}(x) | m_{T}(x)^{N} \implies m_{T}(x), c_{T}(x)$ have same roots.
Algorithm for computing RCF : Reading

Monday, April 27, 2015 10:41 AM

Sometimes tricks are enough ;

$$A = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad xI - A = \begin{pmatrix} x & (\ 1 \\ 0 & x & 0 \\ 1 & 0 & x \end{pmatrix}$$

$$C_{A}(x) = x dut \begin{pmatrix} x & l \\ l & x \end{pmatrix} = x (x^{2} - l) = x(x - l)(x + l).$$

$$\Rightarrow$$
 $m_A(x) = x(x-1)(x+1)$ b/c it dovides $c_A(x)$ & has the same roots.

Thus the invariant factors

$$\begin{array}{l}
\text{Thus the invariant factors} \\
\text{Since } & \prod_{i=1}^{m} a_i(x) = \left(\prod_{i=1}^{m-1} a_i(x) \right) \cdot m_A(x) = c_A(x) \\
\text{integration in the second s$$

get
$$h_A(x)$$
 is the unique invit factor,
We get $F_A^3 \cong F(x)/(x(x-1)(x+1)) = F(x)/(x^3-x)$
and RCF for A is $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

