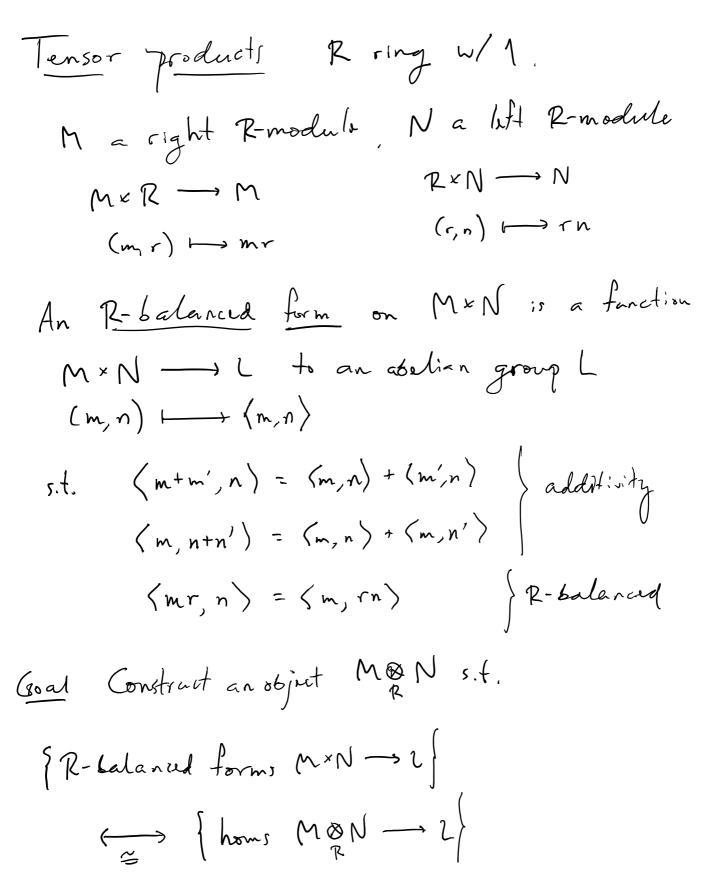
Lecture 43

Friday, April 17, 2015 10:02 AM

$$\frac{\mathcal{P}f}{\mathcal{A}} \frac{\mathcal{P}}{\mathcal{H}_{m}} / \frac{\mathcal{P}}{\mathcal{D}} \frac{\mathcal{T}_{hm}}{\mathcal{T}} (\mathcal{D}_{hi}, N) \cong \prod_{I} \mathcal{H}_{m_{R}}(M; N)$$
Given a Remode how $\mathcal{D}_{I}M_{i} \xrightarrow{\mathcal{T}} N$, we have
$$\begin{array}{c} M_{i} & M_{i} & \stackrel{\mathcal{T}_{i}}{\mathcal{T}} \\ M_{i} & f_{i} = f \cdot i_{j} \\ \mathcal{T}_{i} & \mathcal{T} \\ \mathcal{T} & \mathcal{T}$$

1



We get renth a correspondence if MON ratisfies
H fillowing univ prop:

$$M \times N \longrightarrow MON$$

 $\leq J \qquad i \exists i how of$
 $i \exists i how of$
 $i \exists i how of$
 $diagram commute$
 $R-Ealanced$
free Z-module
form
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N) / R$
 $\sum m M \otimes N := Z \cdot (M \times N)$

Friday, April 17, 2015 10:35 AM

Does M&N have a modele structure?
Defin Rings S, R w/1 define an (S, R)-bimodule
Mtotoche alofte S-module, right R-module s.t.

$$s(mr) = (sm)r$$
 for all seeS, reR , meM .
"If R is commutative, about R-module M
inherits an (R R)-bimodule structure
in which $mr = rM$.
Note $(mr)s = (rm)s - s(rm) = (sr)m$
 $m(rs) = (rs)m$ need R to be
 $(mr)mutative,$
(2) Support fiR > S ring hom.
S is an (S, R)-bimod via
 $s \cdot x = sx$, $x \cdot r = x f(r)$
 $s \in S$, $x \in S$, $r \in R$
(3) $I \leq R$, R/Z is an $(R/Z, R)$ -bimod
 via fiR $\rightarrow P/Z$ reduction mod I.