Lacture 40

Monday, April 13, 2015 10:04 AM

R a (not necessarily commutative or
$$W/1$$
) ring.
Defin An R-module M is an abelian group $(M, +)$
equipped W/an "action" $R \times M \longrightarrow M$
 $(r, m) \longmapsto \sigma m$

s.f. (1)
$$\forall r, s \in \mathbb{R}$$
, $m \in \mathbb{M}$, $(r+s)m = (rm) + (sm)$.
(2) $\forall r, s \in \mathbb{R}$, $m \in \mathbb{M}$, $(rs)m = r(sm)$
(3) $\forall r \in \mathbb{R}$, $m, n \in \mathbb{M}$, $r(m+n) = (rm) + (rn)$
If $1 \in \mathbb{R}$, then (4) $1m = m$.

~

e.g.
$$R$$
 is an R -module via multinin R
 $R^{n} = R^{n} = \frac{R \times R \times \dots \times R}{n + \lim s}$
 $r \cdot (x_{1}, x_{2}, \dots, x_{n}) = (rx_{1}, rx_{2}, \dots, rx_{n})$

Monday, April 13, 2015 10:17 AN

all Z-modules arise in this Fashion {Z-modules} () abelian groups} Defin Let Mbe an R-module. This NGM is a submodule of M if $(N, +) \leq (M, +)$ and the restriction of the R-action on M to N has image in N, i.e. R·N = N. Note Submodules of a 26-modelle are presidely subgpt of the assoc ab gp. E.G. F[x]-modules, Fa field. Let V be an F-vector space. Consider a linear transformation T: V -> V. Define T° = id, T° = Tⁿ⁻¹ = T for n > 0. i.v. $T^{\circ} = :d, T' = T, T^{\circ} = T \circ T, T^{\circ} = T \circ T \circ T, \cdots$ For A, B: V-> V lineer transformations & X, BEF define $\alpha A + \beta B : V \longrightarrow V, v \longmapsto \alpha A(v) + \beta B(v)$

$$xA + pB \quad ir a new linear transformation !$$
So for $p(x) \in F[x]$, $v \in V$
 $a_n x^n + a_{n-1} x^{n-i} + \dots + a_0$
define $p(x) v = (a_n T^n + a_{n-1} T^{n-1} + \dots + a_0)(v)$
 $= a_n T^n(v) + a_{n-1} T^{n-1}(v) + \dots + a_0 v$
 $J.a. x acts as T and thus induces an
 $F(x) - module structure on V.$
Note The same F-vs. V has a different $F[x]$ -mod
str for each $T: V \rightarrow V$!
 $a_{n-1} T = 0$ then $p(x)v = a_0 v$
 $T = id$ then $p(x)v = a_0 v$
 $T = id$ then $p(x)v = a_0 v$
 $= (\sum_{n-1} a_n id)v$
 $= \sum_{n-1} a_n v$
 $x_{n-1} o)$$

$$T: F \longrightarrow F^{m} shift (x_{1}, ..., x_{m}) \mapsto (x_{n}, x_{3}, ..., x_{m}, 0)$$

$$F_{act} \left\{ F[x] - modules \right\} \xrightarrow{\simeq} \left\{ F \cdot vector spaces V \\ + \\ linver T: V \rightarrow V \\ V \longrightarrow V \text{ is an } F - v.s. by action of const polys \\ + \\ T = action of x .$$

$$x^2 \cdot v = x(xv)$$

= $T(Tv) = T^2 v$ etc.

Q What does a submodule of V look like?
Va have
$$W \subseteq V$$
 a sactor subspace of V sit.
 $T(W) \subseteq W$. Such a subspace it called
 T -stable and the T-stable vactor subspaces
which are submodules of V.
 $e.g.$ For shift: if $(x_1, x_2, ..., x_m) \in W$.
 $then (x_2, ..., x_m, 0) \in W$, e.g. $F^k \times 0^{m-k}$

E.G. Racommering w/1, Gagp group ring RG = Lagg Thun RG-modules are representations of G. so "representation theory" = the study of RG-mdulis. Sabmodule Criterion Mar R-module, NEM is a submodule ⇐) ① N≠Ø x ② x+ry ∈ N ∀x,y ∈ N,r ∈ R $\underline{\mathcal{P}}(=)) \quad O \in \mathbb{N} \neq \emptyset$ XEN, YEN, rER => ry EN => x+ryeN (\Leftarrow) Ĺ

Defin R commoning
$$U/1$$
. An R-algebra is a
ring A $U/1$ equipped U/a ring hom
 $f: R \rightarrow A r.t. f(R) \in Z(A)$,
 $i.g. \cdot F[x]$ is an F-alg via $f: F \rightarrow F[x]$
 $a \mapsto a$
 $\cdot R \rightarrow RG$ makes RG on R -alg.
 $r \mapsto r.1$