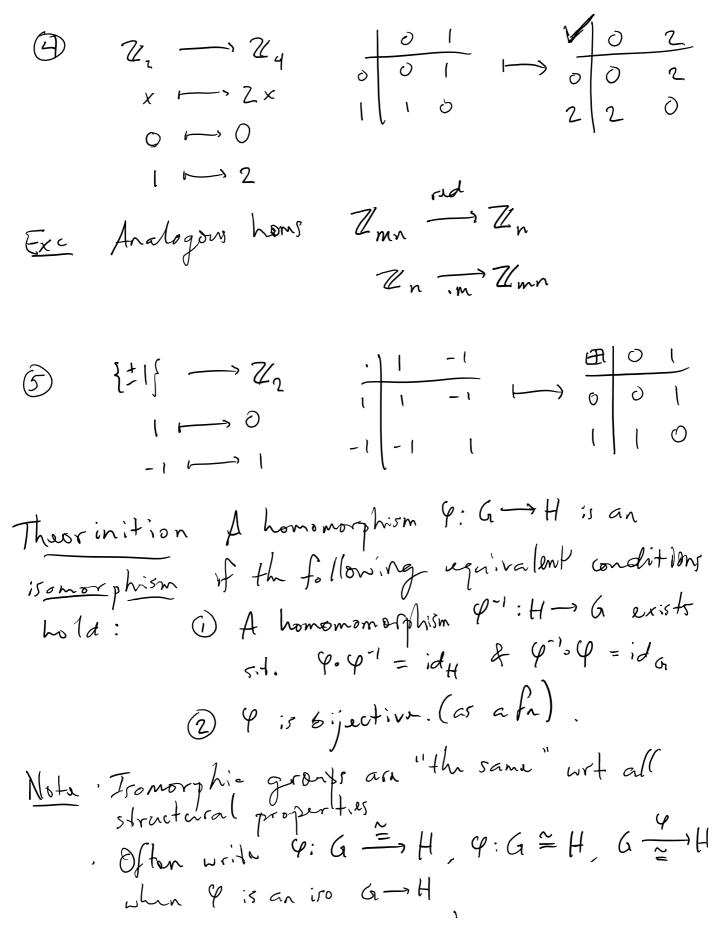
Lecture 4

Friday, January 30, 2015 9:54 AM

PHOD, ANDAY 30, 2015 934 AM

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} & |G| = cardinality of G = \#G = card(G) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array} & 1gl = order of ge6 = ord(g) \\
\end{array}$$



Defin Gromps G, H are isomorphic if
$$\exists$$
 iso $\varphi:G \stackrel{\approx}{=} H$
Us write $G \stackrel{\approx}{=} H$ is this case.

Pf of Theorisidion $0 \implies 0$: Having an isomethod as
a fa is equivalent to being a bijection.
 $(e) \implies 0$: Must check that φ'' (the fa) is in
fact a homomorphism. Suppose
 $\varphi''(h) = g$, $\varphi''(h') = g'$ is that
 $\varphi(g) = h$, $\varphi(g') = h'$ whence
 $\varphi(gg') = \varphi(g) \varphi(g') = hh'$
since φ is a hom
Thus $\varphi''(hh') = gg' = \varphi''(h) \varphi''(h')$, as desired. []
a.g. (b) id: $G \stackrel{\approx}{=} G$
 $(e) \varphi: D_G \stackrel{\approx}{=} S_3$
 $f \implies (1 2 3) \int observe: everything
 $g = f \Rightarrow G$
 φ is a surj blue sets of cardinality $\varphi \implies \varphi$ is bij.$

•

 $\varphi: \mathbb{Z} \xrightarrow{\cong} \mathbb{Z}$ 3 $n \longrightarrow -n$ $\Psi(m+n) = -(m+n) = (-m) + (-n) = \Psi(m) + \Psi(n)$ 6; juitive V Note Isos G -> G are called automorphisms, Non-e.g. Zy -> Zz & Zz -> Zy are not isor. $x_{p}:(\mathbb{R},+)\longrightarrow(\mathbb{R}_{>0},\cdot)$ $exp(x+y) = exp(x) \cdot exp(y)$ $loq: (\mathbb{R}_{>0}, \cdot) \longrightarrow (\mathbb{R}, +)$ leg (xy) = log (x) + log (y) Thus $(\mathbb{R}, +) \cong (\mathbb{R}, 0, \cdot)$ The If Q: G - H is an isomorphism, then 1 |G| = |H| 2 G is abolian iff H is abolian 3 $\forall x \in G$. $|x| = |\varphi(x)|$.

