If woh, d, d'
$$\pm 0$$
. $d \in (d') \Rightarrow \exists x \in \mathbb{R}$. $d = x d'$
 $d' \in (d) \Rightarrow \exists y \in \mathbb{R}$. $d' = y d$
Thus $d = x y d \Rightarrow d(1 - x y) = 0$.

Since $d \neq 0$, $x y = 1$. \square

Pf Suffices to show (i)
$$d|a \otimes a|b \Rightarrow (a) \in (a,b)$$

(a: $dr b = ds$)

(ii)
$$r_0 = a - q_0 b$$
 $r_1 = b - q_1 r_0$
 $r_2 = r_0 - q_2 r_1$
 $r_3 = r_0 - q_2 r_1$

 \Box

Principal Ideal Domains

Recall In a PID R, if (d) = (arb) thin

Odisa ged of n, b

3 d=ax+by for some x,y&R

3 dis unique up to mult by a unit of R.

Prop Every nonzero prime ideal in a PID is max!

Pf (p) 70 1 R a PIT. Let I=(m) de an ideal containing (p), Claim I=(p) or I=R.

 $p \in (m) \implies p = rm \text{ for some } r \in (p) \text{ prime } \Rightarrow r \in (p)$ or $m \in (p)$. If $m \in (p)$ then $(m) \subseteq (p) \implies (m) = (p)$.

If $r \in (p)$, r = ps = 1 $p = rm = psm \Rightarrow sm = 1 \Rightarrow m \in \mathbb{R}^{\times}$ $\Rightarrow (m) = \mathbb{R}$.

Cor If Rija comming such that R(x) is a PID, then Ris a field.

Pf (x) \in Spec $\mathbb{R}[x]$ 6/c $\mathbb{R}[x]/(x) = \mathbb{R}$ an intermed . By the prop, (x) is mix! (, so \mathbb{R} :) \subset field!

Q Are there PID's which are not ED's?

Dufn Nija Dedekind-Hasse norm if Nija positive norm and Va, be? either a e (b) or Jr, t & R W/O < N(5a-t6) < N(6).

s=1 mekes R

Prop An int dom R; a PID \Leftrightarrow R has a D-H norm.

If $0 \neq I \leq R$, $0 \neq b \in I$, N(b) minimal. For $0 \neq a \in I$, $(a,b) \leq I$. If $a \neq (b)$, then $\exists s,t \in R \text{ } w \mid o \in N(sa-bb) \in N(t)$,

contradictining mingof N(b). Thus $a \in (b) \Rightarrow I = (b)$.

Convers: next time.

*.9. $R=2((1+\sqrt{-19})/2)$ has D-H norm | sur book $N(a+b(1+\sqrt{-19})/2)=a^a+ab+5b^2$ so R:i < PD.

Fact Ris not a Eb:

u e R - (R*vo) is a universal side divisor if \forall xe R \forall ze R*vo s.t. x=qu+z

Prop Ran int dom which is not a field. If Risa ED, then Buriu side divisors in R.

Pf $u \in \mathbb{R}^{-(\mathbb{R}^{2} \cup 0)}$ of minimal norm. x = qu + r u' - z = 0 or $N(r) < N(u) \implies r \in \mathbb{R}^{2} \cup 0$ by min of n Hence u : z = z = 1 is z univ riche div. \square

Fact R= 20[(+Fig)/2) has no uni sich dars.