Cecture 32 Monday, March 30, 2015 10:00 AM every ideal has a single generator (x) prime (>) x is Commutative rings with 1 Integral Domaing 7[1-5] Principal Ideas 6 = 2.3 Domains = (1+ \(\frac{1}{5}\) 2((1+1-19)/2) Enclidean · (1-V-5) Domains Z, F[x], Z[i] Unique Factorization Domains $(2,x) \leq \mathbb{Z}[x]$ uniquely factor elements into division irriducible algorithm

Enclidean Domains

R is an integral domain

Defn A function N:R -> N W/ N(0)=0 is a

norm on R. If N(a)70 Vafo ER, thin

V is a positive norm.

Defn Risa Enclidean domain if From Nan R

r.t. $\forall a, b \in \mathbb{R}$ $\exists q, r \in \mathbb{R}$ s.t. $6 \neq 0$ a = qb + r and r = 0 or N(r) < N(b)quotient remainder

division algorithm

When R admits a division algorithm, we get a Euclidean algorithm:

$$a = 7.6 + r_0 \qquad N(6) > N(r_0)$$

$$b = q_1 r_0 + r_1 \qquad N(r_0) > N(r_1)$$

 $N(r_n) > N(r_{n-1})$ rn-2 = 9 n rn-1 + rn

- final stage at which the rumainder is (n-1 = gn+1 m +0

Terminates 6/c

N(8)>N(1)>N(1)>...

is a discending sequence of natural #5.

e.g. 3 Fields w' any norm have a div alg: $q = ab^{-1}$, r = 0.

① \mathbb{Z} $\mathbb{Z}/\mathbb{N}(a) = |a|$. $a, b \in \mathbb{Z}, b \neq 0$

-21 6 R

a e [h6, (k+1)b), ke7.

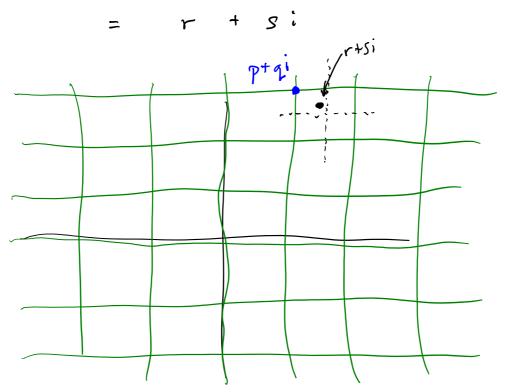
Set q=k to get a-qb ∈ (0,161) Thus a=qb+r, where |r|<|b|.

② F a field, F[x] $w/N(p(x)) = dig_{x}(p(x))$ admits a division algorithm.

3) The Gaussian integers
$$2[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$$
.
 $N(a+bi) = a^2 + b^2$.

Set
$$\alpha = a+bi$$
, $\beta = c+di \neq 0$,

Then $\frac{\alpha}{\beta} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i \in Q(i)$
 $\{e+f; \{e,f \in Q\}\}$



Choose
$$p+qi \in \mathbb{Z}[i]$$
 s.t. $|r-p|, |s-q| \leq \frac{1}{2}$
Claim $Y = \alpha - (p+qi)\beta \in \mathbb{Z}[i]$ w $N(Y) \leq \frac{1}{2}N(B)$
But $Y = (\frac{\alpha}{\beta} - (p+qi))\beta = ((r-q)+(s-q)i)\beta$

$$N((r-p)+(s-q)i) = (r-p)^{2}+(s-q)^{2}$$

 $\leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2}$

and N is multiplicative so

 $N(Y) \leq \frac{1}{2} \cdot N(\beta)$.

4) Discrete valuation rings Or = K via $N(x) = \begin{cases} v(x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

> If v(a) <v(b) then a=0.6+a If v(a) > v(b), then q = ab' & Or b/c v(ab')=v(a)-v(b)>0 50 a= 96+0 works.

toop Enclidean domains are PIDs.

If Suppose I ≤R in a EDR, I +O, Take OfdEI with N(d) minimal in N(I-805).

Harn (d) E I . For a & I , writn a = qd+r, r=0 or N(r)<N(d). N(r) < N(d) condradiots minimality of N(d), so r = 0 and $a = qd \implies a \in (d)$ Thus $I = (d) \implies I = (d)$. Cor Z(IX) is not a ED b/c it's not a P/D. Fact Z(V-5) is not a ED b/c I = (3, 2+V-5) is not principal.

Greatest common divisors:

R a common ring w/1

Definition For a, b & R, d is a greatest common divisor of a & b if

(a, b) \(\sigma(d) \) [d divides a \(\tilde{b} \)] and if (a, b) \(\sigma(d) \) \((d') \), then (d) \(\sigma(d') \) [any other divisor d' of a \(\tilde{b} \) also divides d]

Proop If (d) = (d') \(\tilde{A} \), then \(d = ud' \) for u \(\tilde{P}^{\tilde{x}} \).

Lanintegral domain

Pf Wob, $d, d' \neq 0$.

Since $d \in (d')$, $\exists x . d = xd'$ $d' \in (d)$, $\exists y . d' = yd$ Thus $d = xyd \implies d(1-xy) = 0$ Since R is an integral domain $A \neq 0$, $1-xy=0 \implies 1=xy \implies x,y \in R^{x}$. \square