Lecture 28

Monday, March 16, 2015 9:59 AM

$$\begin{array}{l} \overline{\text{Dufin}} \quad A \; ring \; (\mathcal{R}, +, \cdot) \; \text{ is a set } \mathcal{R} \; \text{and } 2 \\ \text{dinar } j \; \text{ops } +, \cdot \; \text{s.t.} \\ \hline 1 \; (\mathcal{R}, +) \; \text{ is an abelian group} \\ \hline 2 \; \cdot \; \text{ is associative} \\ \hline 3 \; \cdot \; \text{ dirtributes over } + \; \cdot \; \forall a, b, c \in \mathcal{R} \; , \\ (a+b) \cdot c \; = \; (a \cdot c) + (b \cdot c) \; + \\ c \cdot (a+b) \; = \; (c \cdot a) + (c \cdot b) \; . \end{array}$$

Monday, March 16, 2015 10:15 AM

$$H = \left\{ a + bi + cj + dk \mid a, b, c, d \in R \right\}$$
is the Hamilton quaternions is a division ring
w/ coordinatowish addition and multin believed
so that Qg multin happens and distribulinity
holds.

$$(1+j) \cdot (3+2i - 5k)$$

$$= 3+2i - 5k + 3j - 2k - 5i$$

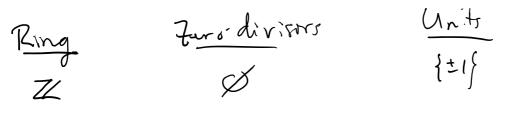
$$= 3 - 3i + 3j - 7k .$$

• A a ring, X a set
$$Map(X, A) =$$

 $\{f_{NS}, f: X \rightarrow A\}$ For $f_{\cdot g} \in Mag(X, A)$,
 $f + g : X \rightarrow A$, $x \mapsto f(x) + g(x)$
 $f_{\cdot g} : X \rightarrow A$, $x \mapsto f(x) \cdot g(x)$
This is a ring. Comm if A is comm
 $W(A)$ if A has A.

Prop R a ring. Then
()
$$0 \cdot a = a \cdot 0 = 0$$
 track
() $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$ track
() $(-a) \cdot (-b) = ab$
() If $1 \in \mathbb{R}$, the 1 is unique $b - a = (-1) \cdot a$. []
Defin A subring $S \in \mathbb{R}$ is a subget $(S, +)$ of $(\mathbb{R}, +)$
which is about when \cdot

which it closed under .
e.g.
$$Z \subseteq Q \subseteq R \subseteq C \subseteq H$$
 is a chain of subrings.



$$\frac{7}{n\pi}$$
 $\begin{cases} \overline{a} = a + n\pi & s.t. \\ (a,n) \neq 1 \end{cases}$ $\begin{cases} \overline{a} = s.t. & (a,n) = 1 \end{cases}$

Ffield
$$\mathscr{D}$$
 F- $\{0\} = F^{\times}$
 $J = Map([0,1], \mathbb{R})$ $J \sim (f_{ns} which \cup \{0\})$ $\{f:[0,1] \rightarrow \mathbb{R} \sim \{0\}\}$
 $= 0$
 $I_{norm} = 0$
 $I_{norm} =$

Defin A commutative w/ 1+0 and no zero divisors
is called an integral domain .
i.g. Z, filds, ...
Prop Assume a, b, c ER a ring and a is not
a zero divisor. If a b = a c. , then a = 0 or
b = c. In perticular, we have cancellation
in an integral domain.
Pf If ab = ac, then ab = ac = 0

$$a(b-c) = 0$$

since a is not a zero divisor, we must have
 $b-c=0 \Rightarrow b=c$. [1]
Con Any finite integral domain is a field.
Pf For a ER [0], $x \mapsto ax$ is an injective
fn R \rightarrow R by cancellation (ax-ay \Rightarrow x-y).
They the finite a bijection so $\exists b \in \mathbb{R}$ -log st. ab (1)

