Lecture 25

Saturday, March 7, 2015 12:38 PM

Semi-diract products Recall H, K=G, HnK=I -> HK=H×K. What if H=G, K=G, HnK=1, Still have $HK \leq G & HK \xrightarrow{\varphi} H \times K$ a well-defined bijection. $hk \mapsto (h,k)$ But it is no longer the case that I is a hom. $(h, k,)(h, k_2) = h, k, h_2(k, k)k_2$ $= h_1(k,h_1k_1)(k,k_2) = h_3k_3$ eH h3 eH k3 eK We seek to put a new group str on the set H × K so that 9: HK -> HXK is a gp iso. (Hure HXK is notation for HxK w/ new Clearly $(h_1, k_2) \cdot (h_2, k_2) = (h_1(k_1, h_2, k_1)), k_1 k_2)$ [to be determined] gp str.) × prod conj (hr) is the desired for la. (conift, E Aut (H) In fact have K in Aut (H) a hom. k in conjk Seek to gen'lize and permit any how $\varphi: \mathbf{K} \longrightarrow \operatorname{Aut}(\mathbf{H})$ Such I inducer, of course, an action KÿH. Writer kth for P(k)(h).

Saturday, March 7, 2015 4:06 PM

Pf () Easy to check manually given that
$$K \stackrel{\circ}{}_{*} H$$
 is a group action.
(2) The maps are clearly injective. To see the maps are homs,
note that $(h, 1) \cdot (h', 1) = (h(1*h'), 1) = (hh', 1)$
& $(1, k) \cdot (1, k') = (1, kk')$.
(5) $(1, k) (h, 1) (1, k)^{-1} = (k*h, k) (1, k^{-1})$
 $= ((k*h) (k*1), kk^{-1})$

= (k*h,1). I.1. khk⁻¹ = k*h.