Lectora 22

Tuesday, March 3, 2015

Gagronp, x,yeG, 9+A,B =G

Defr (1) The commutator of x & y is $[x,y] = x^{-1}y^{-1}xy$

(2) $[A,B] = \langle [a,b] | a \in A, b \in B \rangle \leq G$

the commutator entry of A,B.

3 [6, 6] = 6' is the commutator subgroup

8 6.

Prop (1) xy = yx [x,y] so $xy = yx \Leftrightarrow [x,y]$.

If $yx(x,y) = yx x^{-1}y^{-1}xy$

= yy xy

= xy - D

(2) A subgroup H < G is normal in G =>
(H, G) < H.

Pf He4 = WhtH, gth, gthy & H

€ hghg €H

Tuesday, March 3, 2015

The start of Ant (G),
$$\sigma([x,y]) = [\sigma(x), \sigma(y)]$$
.

Moreover, $[G,G]$ chan $G \Longrightarrow [G,G] \cong G$,

A then G when $\sigma(H) = H$

You that G

The formal G

The formal G

The formal G

Thus $\sigma: \{[x,y] \mid x,y \in G\} \longrightarrow \{[x,y] \mid x,y \in G\}$

If $\sigma(x,y) = \sigma(x^{-1}y^{-1}xy) - \sigma(x^{-1})\sigma(y^{-1})\sigma(x)\sigma(y)$
 $\sigma(x,y) = \sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y)$

Thus $\sigma: \{[x,y] \mid x,y \in G\} \longrightarrow \{[x,y] \mid x,y \in G\}$

If $\sigma(x,y) = \sigma(x,y) = \sigma(x,y)$

For each $\sigma(x,y) = \sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$

Thus $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$

Thus $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$

Thus $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$

Thus $\sigma(x,y) = \sigma(x,y)$
 $\sigma(x,y) = \sigma(x,y)$

Tuesday, March 3, 2015 10:20 AM

Suppose
$$x[6,6], y[6,6] \in G/[6,6]$$

Then $(x[6,6])(y[6,6]) = (xy)[6,6]$
 $= (yx[x,y])[6,6]$
 $= (yx)[6,6]$ b/c $[x,y] \in [6,6]$.
 $= (y)[6,6](x[6,6])$.
Thus $G/[6,6]$ is abortion.

F) G/[G,G] sortisfies the following universal projecty: If A is an abelian group and $9:G \longrightarrow A$ is a hom, then 7! $9^{ab}: G/[G,G] \longrightarrow A$ s.t. $G \longrightarrow G/[G,G]$ commutes.

 $G \longrightarrow G/EG,GJ$ commutes. $\varphi \longrightarrow G/EG,GJ$

In particular, if G/H is another abelian quotient of G, get G/(G,G) -> G/H so [G,G] \left H.

Check
$$\varphi([x,y]) = \varphi(x^{-1}y^{-1}xy)$$

$$= [\varphi(x), \varphi(y)] = 1 \text{ b/c } A \text{ is abelian.}$$
This shows $[6,6] \in \ker(9)$. \square

e.g. (let
$$G = Q_g$$
. What are the commutators in Q_g ?
$$1=[1,1], \qquad [i,j]=(-i)(-j)ij$$

$$=+[\cdot(ij)(ij)$$

$$= k \cdot k = -1$$

$$\text{Can chech } [Q_{\delta}, Q_{\delta}] = \{\pm 1\}$$

$$\text{Thus } Q_{\delta}^{ab} = Q_{\delta}/\{\pm 1\} \cong Z_{2} \times Z_{2},$$

Tuesday, March 3, 2015 10-38 AM

The first addien,
$$[6,6]=1$$
 and $[ab=6]$.

Facts $[5n,5n]=A_n \Rightarrow 5nd=5n/A_n = Z_2$.

 $[A_5,A_5]=A_5 \Rightarrow A_5 = A_5/A_5 = 1$.

Aside If $[ab=1]$, what homs $[ab=A_5]$ addien, exist?

 $[ab=A_5]$ for $[ab=A_5]$ hom, the frivial hom.

Consider the cats $[ab=A_5]$ hom, $[ab=A_5]$ hom.

 $[ab=A_5]$ for $[ab=A$

Get dijection Gp (G, U(A)) ~ Ab (Gab, A) Example of an adjunction blan functors.